Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Lessons learnt from the first EMEP intensive measurement periods

2012, Aas, W., Tsyro, S., Bieber, E., Bergström, R., Ceburnis, D., Ellermann, T., Fagerli, H., Frölich, M., Gehrig, R., Makkonen, U., Nemitz, E., Otjes, R., Perez, N., Perrino, C., Prévôt, A.S.H., Putaud, J.-P., Simpson, D., Spindler, G., Vana, M., Yttri, K.E.

The first EMEP intensive measurement periods were held in June 2006 and January 2007. The measurements aimed to characterize the aerosol chemical compositions, including the gas/aerosol partitioning of inorganic compounds. The measurement program during these periods included daily or hourly measurements of the secondary inorganic components, with additional measurements of elemental- and organic carbon (EC and OC) and mineral dust in PM1, PM2.5 and PM10. These measurements have provided extended knowledge regarding the composition of particulate matter and the temporal and spatial variability of PM, as well as an extended database for the assessment of chemical transport models. This paper summarise the first experiences of making use of measurements from the first EMEP intensive measurement periods along with EMEP model results from the updated model version to characterise aerosol composition. We investigated how the PM chemical composition varies between the summer and the winter month and geographically. The observation and model data are in general agreement regarding the main features of PM10 and PM2.5 composition and the relative contribution of different components, though the EMEP model tends to give slightly lower estimates of PM10 and PM2.5 compared to measurements. The intensive measurement data has identified areas where improvements are needed. Hourly concurrent measurements of gaseous and particulate components for the first time facilitated testing of modelled diurnal variability of the gas/aerosol partitioning of nitrogen species. In general, the modelled diurnal cycles of nitrate and ammonium aerosols are in fair agreement with the measurements, but the diurnal variability of ammonia is not well captured. The largest differences between model and observations of aerosol mass are seen in Italy during winter, which to a large extent may be explained by an underestimation of residential wood burning sources. It should be noted that both primary and secondary OC has been included in the calculations for the first time, showing promising results. Mineral dust is important, especially in southern Europe, and the model seems to capture the dust episodes well. The lack of measurements of mineral dust hampers the possibility for model evaluation for this highly uncertain PM component. There are also lessons learnt regarding improved measurements for future intensive periods. There is a need for increased comparability between the measurements at different sites. For the nitrogen compounds it is clear that more measurements using artefact free methods based on continuous measurement methods and/or denuders are needed. For EC/OC, a reference methodology (both in field and laboratory) was lacking during these periods giving problems with comparability, though measurement protocols have recently been established and these should be followed by the Parties to the EMEP Protocol. For measurements with no defined protocols, it might be a good solution to use centralised laboratories to ensure comparability across the network. To cope with the introduction of these new measurements, new reporting guidelines have been developed to ensure that all proper information about the methodologies and data quality is given.

Loading...
Thumbnail Image
Item

A parameterization of low visibilities for hazy days in the North China Plain

2012, Chen, J., Zhao, C.S., Ma, N., Liu, P.F., Göbel, T., Hallbauer, E., Deng, Z.Z., Ran, L., Xu, W.Y., Liang, Z., Liu, H.J., Yan, P., Zhou, X.J., Wiedensohler, A.

Visibility degradation is a pervasive and urgent environmental problem in China. The occurrence of low visibility events is frequent in the North China Plain, where the aerosol loading is quite high and aerosols are strongly hygroscopic. A parameterization of light extinction (Kex) for low visibilities on hazy days is proposed in this paper, based on visibility, relative humidity (RH), aerosol hygroscopic growth factors and particle number size distributions measured during the Haze in China (HaChi) Project. Observational results show that a high aerosol volume concentration is responsible for low visibility at RH <90%; while for RH >90%, decrease of visibility is mainly influenced by the increase of RH. The parameterization of Kex is developed on the basis of aerosol volume concentrations and RH, taking into accounts the sensitivity of visibility to the two factors and the availability of corresponding data. The extinction coefficients calculated with the parameterization schemes agree well with the directly measured values.

Loading...
Thumbnail Image
Item

Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber

2012, Voigtländer, J., Duplissy, J., Rondo, L., Kürten, A., Stratmann, F.

To study the effect of galactic cosmic rays on aerosols and clouds, the Cosmics Leaving OUtdoor Droplets (CLOUD) project was established. Experiments are carried out at a 26.1 m3 tank at CERN (Switzerland). In the experiments, the effect of ionizing radiation on H2SO4 particle formation and growth is investigated. To evaluate the experimental configuration, the experiment was simulated using a coupled multidimensional computational fluid dynamics (CFD) – particle model. In the model the coupled fields of gas/vapor species, temperature, flow velocity and particle properties were computed to investigate mixing state and mixing times of the CLOUD tank's contents. Simulation results show that a 1-fan configuration, as used in first experiments, may not be sufficient to ensure a homogeneously mixed chamber. To mix the tank properly, two fans and sufficiently high fan speeds are necessary. The 1/e response times for instantaneous changes of wall temperature and saturation ratio were found to be in the order of few minutes. Particle nucleation and growth was also simulated and particle number size distribution properties of the freshly nucleated particles (particle number, mean size, standard deviation of the assumed log-normal distribution) were found to be distributed over the tank's volume similar to the gas species.

Loading...
Thumbnail Image
Item

Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece

2012, Mamouri, R.E., Papayannis, A., Amiridis, V., Müller, D., Kokkalis, P., Rapsomanikis, S., Karageorgos, E.T., Tsaknakis, G., Nenes, A., Kazadzis, S., Remoundaki, E.

A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project, which took place between 15–31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers that occurred on 20–21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius (reff), single-scattering albedo ω) and mean complex refractive index (m)) at selected heights in the 2–3 km height region. We found that reff was 0.14–0.4 (±0.14) μm, ω was 0.63–0.88 (±0.08) (at 532 nm) and m ranged from 1.44 (±0.10) + 0.01 (±0.01)i to 1.55 (±0.12) + 0.06 (±0.02)i, in good agreement (only for the reff values) with in situ aircraft measurements. The water vapor and temperature profiles were incorporated into the ISORROPIA II model to propose a possible in situ aerosol composition consistent with the retrieved m and ω values. The retrieved aerosol chemical composition in the 2–3 km height region gave a variable range of sulfate (0–60%) and organic carbon (OC) content (0–50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; the retrieved low ω value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sun photometer CIMEL data.

Loading...
Thumbnail Image
Item

Technical Note: One year of Raman-lidar measurements in Gual Pahari EUCAARI site close to New Delhi in India – Seasonal characteristics of the aerosol vertical structure

2012, Komppula, M., Mielonen, T., Arola, A., Korhonen, K., Lihavainen, H., Hyvärinen, A.-P., Baars, H., Engelmann, R., Althausen, D., Ansmann, A., Müller, D., Panwar, T.S., Hooda, R.K., Sharma, V.P., Kerminen, V.-M., Lehtinen, K.E.J., Viisanen, Y.

One year of multi-wavelength (3 backscatter + 2 extinction + 1 depolarization) Raman lidar measurements at Gual Pahari, close to New Delhi, were analysed. The data was split into four seasons: spring (March–May), summer (June–August), autumn (September–November) and winter (December–February). The vertical profiles of backscatter, extinction, and lidar ratio and their variability during each season are presented. The measurements revealed that, on average, the aerosol layer was at its highest in spring (5.5 km). In summer, the vertically averaged (between 1–3 km) backscatter and extinction coefficients had the highest averages (3.3 Mm−1 sr−1 and 142 Mm−1 at 532 nm, respectively). Aerosol concentrations were slightly higher in summer compared to other seasons, and particles were larger in size. The autumn showed the highest lidar ratio and high extinction-related Ångström exponents (AEext), indicating the presence of smaller probably absorbing particles. The winter had the lowest backscatter and extinction coefficients, but AEext was the highest, suggesting still a large amount of small particles.