Search Results

Now showing 1 - 10 of 342
Loading...
Thumbnail Image
Item

High spatial and temporal resolution cell manipulation techniques in microchannels

2016, Novo, Pedro, Dell’Aica, Margherita, Janasek, Dirk, Zahedi, René P.

The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.

Loading...
Thumbnail Image
Item

Fabrication and investigation of three-dimensional ferroelectric capacitors for the application of FeRAM

2016, Yeh, Chia-Pin, Lisker, Marco, Kalkofen, Bodo, Burte, Edmund P.

Ferroelectric capacitors made by lead zirconate titanate (PZT) thin films and iridium electrodes are fabricated on three-dimensional structures and their properties are investigated. The iridium films are grown by Plasma Enhanced MOCVD at 300°C, while the PZT films are deposited by thermal MOCVD at different process temperatures between 450°C and 550°C. The step coverage and composition uniformity of the PZT films on trench holes and lines are investigated. Phase separation of PZT films has been observed on both 3D and planar structures. No clear dependences of the crystallization and composition of PZT on 3D structure topography have been found. STEM EDX line scans show a uniform Zr/(Zr+Ti) concentration ratio along the 3D profile but the variation of the Pb/(Zr+Ti) concentration ratio is large because of the phase separation. 3D ferroelectric capacitors show good ferroelectric properties but have much higher leakage currents than 2D ferroelectric capacitors. Nevertheless, during cycling tests the degradation of the remnant polarization between 2D and 3D capacitors is similar after 109 switching cycles. In addition, the sidewalls and bottoms of the 3D structures seem to have comparable remnant polarizations with the horizontal top surfaces.

Loading...
Thumbnail Image
Item

Cloud radar with hybrid mode towards estimation of shape and orientation of ice crystals

2016, Myagkov, A., Seifert, P., Bauer-Pfundstein, M., Wandinger, U.

This paper is devoted to the experimental quantitative characterization of the shape and orientation distribution of ice particles in clouds. The characterization is based on measured and modeled elevation dependencies of the polarimetric parameters differential reflectivity and correlation coefficient. The polarimetric data are obtained using a newly developed 35 GHz cloud radar MIRA-35 with hybrid polarimetric configuration and scanning capabilities. The full procedure chain of the technical implementation and the realization of the setup of the hybrid-mode cloud radar for the shape determination are presented. This includes the description of phase adjustments in the transmitting paths, the introduction of the general data processing scheme, correction of the data for the differences of amplifications and electrical path lengths in the transmitting and receiving channels, the rotation of the polarization basis by 45°, the correction of antenna effects on polarimetric measurements, the determination of spectral polarimetric variables, and the formulation of a scheme to increase the signal-to-noise ratio. Modeling of the polarimetric variables is based on existing back-scattering models assuming the spheroidal representation of cloud scatterers. The parameters retrieved from the model are polarizability ratio and degree of orientation, which can be assigned to certain particle orientations and shapes. The developed algorithm is applied to a measurement of the hybrid-mode cloud radar taken on 20 October 2014 in Cabauw, the Netherlands, in the framework of the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign. The case study shows the retrieved polarizability ratio and degree of orientation of ice particles for a cloud system of three cloud layers at different heights. Retrieved polarizability ratios are 0.43, 0.85, and 1.5 which correspond to oblate, quasi-spherical, and columnar ice particles, respectively. It is shown that the polarizability ratio is useful for the detection of aggregation/riming processes. The orientation of oblate and prolate particles is estimated to be close to horizontal while quasi-spherical particles were found to be more randomly oriented.

Loading...
Thumbnail Image
Item

EARLINET instrument intercomparison campaigns: Overview on strategy and results

2016, Wandinger, Ulla, Freudenthaler, Volker, Baars, Holger, Amodeo, Aldo, Engelmann, Ronny, Mattis, Ina, Groß, Silke, Pappalardo, Gelsomina, Giunta, Aldo, D'Amico, Giuseppe, Chaikovsky, Anatoli, Osipenko, Fiodor, Slesar, Alexander, Nicolae, Doina, Belegante, Livio, Talianu, Camelia, Serikov, Ilya, Linné, Holger, Jansen, Friedhelm, Apituley, Arnoud, Wilson, Keith M., de Graaf, Martin, Trickl, Thomas, Giehl, Helmut, Adam, Mariana, Comerón, Adolfo, Muñoz-Porcar, Constantino, Rocadenbosch, Francesc, Sicard, Michaël, Tomás, Sergio, Lange, Diego, Kumar, Dhiraj, Pujadas, Manuel, Molero, Francisco, Fernández, Alfonso J., Alados-Arboledas, Lucas, Bravo-Aranda, Juan Antonio, Navas-Guzmán, Francisco, Guerrero-Rascado, Juan Luis, Granados-Muñoz, María José, Preißler, Jana, Wagner, Frank, Gausa, Michael, Grigorov, Ivan, Stoyanov, Dimitar, Iarlori, Marco, Rizi, Vincenco, Spinelli, Nicola, Boselli, Antonella, Wang, Xuan, Feudo, Teresa Lo, Perrone, Maria Rita, De Tomas, Ferdinando, Burlizzi, Pasquale

This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009. We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607 nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below ±2 %. Particle backscatter and extinction coefficients agree within ±2  ×  10−4 km−1 sr−1 and ± 0.01 km−1, respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future.

Loading...
Thumbnail Image
Item

Multiple lobes in the far-field distribution of terahertz quantum-cascade lasers due to self-interference

2016, Röben, B., Wienold, M., Schrottke, L., Grahn, H.T.

The far-field distribution of the emission intensity of terahertz (THz) quantumcascade lasers (QCLs) frequently exhibits multiple lobes instead of a single-lobed Gaussian distribution. We show that such multiple lobes can result from selfinterference related to the typically large beam divergence of THz QCLs and the presence of an inevitable cryogenic operation environment including optical windows. We develop a quantitative model to reproduce the multiple lobes. We also demonstrate how a single-lobed far-field distribution can be achieved.

Loading...
Thumbnail Image
Item

Kinetics versus thermodynamics of the metal incorporation in molecular beam epitaxy of (InxGa1−x)2O3

2016, Vogt, Patrick, Bierwagen, Oliver

We present a detailed study of the reaction kinetics and thermodynamics of the plasma-assisted oxide molecular beam epitaxy of the ternary compound (InxGa1−x)2O3 for 0 ≤ x ≤ 1. We measured the growth rate of the alloy in situ by laser reflectrometry as a function of growth temperature T G for different metal-to-oxygen flux ratios r Me, and nominal In concentrations x nom in the metal flux. We determined ex situ the In and Ga concentrations in the grown film by energy dispersive X-ray spectroscopy. The measured In concentration x shows a strong dependence on the growth parameters T G, r Me, and x nom whereas growth on different co-loaded substrates shows that in the macroscopic regime of ∼μm3 x does neither depend on the detailed layer crystallinity nor on crystal orientation. The data unveil that, in presence of In, Ga incorporation is kinetically limited by Ga2O desorption the same way as during Ga2O 3 growth. In contrast, In incorporation during ternary growth is thermodynamically suppressed by the presence of Ga due to stronger Ga–O bonds. Our experiments revealed that Ga adatoms decompose/etch the In–O bonds whereas In adatoms do not decompose/etch the Ga–O bonds. This result is supported by our thermochemical calculations. In addition we found that a low T G and/or excessively low r Me kinetically enables In incorporation into (InxGa1−x)2O3. This study may help growing high-quality ternary compounds (InxGa1−x)2O3 allowing band gap engineering over the range of 2.7–4.7 eV.

Loading...
Thumbnail Image
Item

The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation

2016, Engelmann, Ronny, Kanitz, Thomas, Baars, Holger, Heese, Birgit, Althausen, Dietrich, Skupin, Annett, Wandinger, Ulla, Komppula, Mika, Stachlewska, Iwona S., Amiridis, Vassilis, Marinou, Eleni, Mattis, Ina, Linné, Holger, Ansmann, Albert

The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24∕7 monitoring of the atmospheric state with PollyXT.

Loading...
Thumbnail Image
Item

Fulleretic well-defined scaffolds: Donor–fullerene alignment through metal coordination and its effect on photophysics

2016, Williams, Derek E., Dolgopolova, Ekaterina A., Godfrey, Danielle C., Ermolaeva, Evgeniya D., Pellechia, Perry J., Greytak, Andrew B., Smith, Mark D., Avdoshenko, Stanislav M., Popov, Alexey A., Shustova, Natalia B.

Herein, we report the first example of a crystalline metal–donor–fullerene framework, in which control of the donor–fullerene mutual orientation was achieved through chemical bond formation, in particular, by metal coordination. The 13C cross‐polarization magic‐angle spinning NMR spectroscopy, X‐ray diffraction, and time‐resolved fluorescence spectroscopy were performed for comprehensive structural analysis and energy‐transfer (ET) studies of the fulleretic donor–acceptor scaffold. Furthermore, in combination with photoluminescence measurements, the theoretical calculations of the spectral overlap function, Förster radius, excitation energies, and band structure were employed to elucidate the photophysical and ET processes in the prepared fulleretic material. We envision that the well‐defined fulleretic donor–acceptor materials could contribute not only to the basic science of fullerene chemistry but would also be used towards effective development of organic photovoltaics and molecular electronics.

Loading...
Thumbnail Image
Item

Controllable sliding transfer of wafer‐size graphene

2016, Lu, Wenjing, Zeng, Mengqi, Li, Xuesong, Wang, Jiao, Tan, Lifang, Shao, Miaomiao, Han, Jiangli, Wang, Sheng, Yue, Shuanglin, Zhang, Tao, Hu, Xuebo, Mendes, Rafael G., Rümmeli, Mark H., Peng, Lianmao, Liu, Zhongfan, Fu, Lei

The innovative design of sliding transfer based on a liquid substrate can succinctly transfer high‐quality, wafer‐size, and contamination‐free graphene within a few seconds. Moreover, it can be extended to transfer other 2D materials. The efficient sliding transfer approach can obtain high‐quality and large‐area graphene for fundamental research and industrial applications.

Loading...
Thumbnail Image
Item

EARLINET Single Calculus Chain – technical – Part 1: Pre-processing of raw lidar data

2016, D'Amico, Giuseppe, Amodeo, Aldo, Mattis, Ina, Freudenthaler, Volker, Pappalardo, Gelsomina

In this paper we describe an automatic tool for the pre-processing of aerosol lidar data called ELPP (EARLINET Lidar Pre-Processor). It is one of two calculus modules of the EARLINET Single Calculus Chain (SCC), the automatic tool for the analysis of EARLINET data. ELPP is an open source module that executes instrumental corrections and data handling of the raw lidar signals, making the lidar data ready to be processed by the optical retrieval algorithms. According to the specific lidar configuration, ELPP automatically performs dead-time correction, atmospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay correction. Moreover, the signal-to-noise ratio of the pre-processed signals can be improved by means of configurable time integration of the raw signals and/or spatial smoothing. ELPP delivers the statistical uncertainties of the final products by means of error propagation or Monte Carlo simulations. During the development of ELPP, particular attention has been payed to make the tool flexible enough to handle all lidar configurations currently used within the EARLINET community. Moreover, it has been designed in a modular way to allow an easy extension to lidar configurations not yet implemented. The primary goal of ELPP is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of ELPP. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. ELPP has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.