Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

A faux hawk fullerene with PCBM-like properties

2014, San, Long K., Bukovsky, Eric V., Larson, Bryon W., Whitaker, James B., Deng, S.H.M., Kopidakis, Nikos, Rumbles, Garry, Popov, Alexey A., Chen, Yu-Sheng, Wang, Xue-Bin, Boltalina, Olga V., Strauss, Steven H.

Reaction of C60, C6F5CF2I, and SnH(n-Bu)3 produced, among other unidentified fullerene derivatives, the two new compounds 1,9-C60(CF2C6F5)H (1) and 1,9-C60(cyclo-CF2(2-C6F4)) (2). The highest isolated yield of 1 was 35% based on C60. Depending on the reaction conditions, the relative amounts of 1 and 2 generated in situ were as high as 85% and 71%, respectively, based on HPLC peak integration and summing over all fullerene species present other than unreacted C60. Compound 1 is thermally stable in 1,2-dichlorobenzene (oDCB) at 160 °C but was rapidly converted to 2 upon addition of Sn2(n-Bu)6 at this temperature. In contrast, complete conversion of 1 to 2 occurred within minutes, or hours, at 25 °C in 90/10 (v/v) PhCN/C6D6 by addition of stoichiometric, or sub-stoichiometric, amounts of proton sponge (PS) or cobaltocene (CoCp2). DFT calculations indicate that when 1 is deprotonated, the anion C60(CF2C6F5)− can undergo facile intramolecular SNAr annulation to form 2 with concomitant loss of F−. To our knowledge this is the first observation of a fullerene-cage carbanion acting as an SNAr nucleophile towards an aromatic C–F bond. The gas-phase electron affinity (EA) of 2 was determined to be 2.805(10) eV by low-temperature PES, higher by 0.12(1) eV than the EA of C60 and higher by 0.18(1) eV than the EA of phenyl-C61-butyric acid methyl ester (PCBM). In contrast, the relative E1/2(0/−) values of 2 and C60, −0.01(1) and 0.00(1) V, respectively, are virtually the same (on this scale, and under the same conditions, the E1/2(0/−) of PCBM is −0.09 V). Time-resolved microwave conductivity charge-carrier yield × mobility values for organic photovoltaic active-layer-type blends of 2 and poly-3-hexylthiophene (P3HT) were comparable to those for equimolar blends of PCBM and P3HT. The structure of solvent-free crystals of 2 was determined by single-crystal X-ray diffraction. The number of nearest-neighbor fullerene–fullerene interactions with centroid⋯centroid (⊙⋯⊙) distances of ≤10.34 Å is significantly greater, and the average ⊙⋯⊙ distance is shorter, for 2 (10 nearest neighbors; ave. ⊙⋯⊙ distance = 10.09 Å) than for solvent-free crystals of PCBM (7 nearest neighbors; ave. ⊙⋯⊙ distance = 10.17 Å). Finally, the thermal stability of 2 was found to be far greater than that of PCBM.

Loading...
Thumbnail Image
Item

A second polymorph of 3,4-bis­­(6-bromo­pyridin-3-yl)-1,2,5-thia­diazole

2016, Becker, Lisanne, Altenburger, Kai, Spannenberg, Anke, Arndt, Perdita, Rosenthal, Uwe

The title compound, C12H6Br2N4S, a second polymorph in the triclinic space group P-1, is presented. As in the earlier reported monoclinic polymorph in the space group C2/c [Becker et al. (2016[Becker, L., Reiss, F., Altenburger, K., Spannenberg, A., Arndt, P., Jiao, H. & Rosenthal, U. (2016). Chem. Eur. J. In the press. doi: 10.1002/chem.201601337.]). Chem. Eur. J. In the press], the thia­diazole ring is planar with an r.m.s. deviation of 0.004 Å. The five-membered ring is tilted with respect to the two pyridyl substituents by 23.16 (7) and 49.47 (9)°. In the crystal, mol­ecules are linked by a weak non-bonding Br⋯N inter­action [3.056 (3) Å]. Furthermore, a column of mol­ecules is established along the b axis by π–π stacking inter­actions between the pyridine rings [centroid–centroid distances = 3.7014 (16) and 3.5934 (15) Å]. Additionally, a short inter­molecular Br⋯Br contact [3.3791 (6) Å] and Br⋯π-aryl contacts [3.6815 (11)–3.7659 (12) Å] towards the thia­diazole and pyridine rings are found.

Loading...
Thumbnail Image
Item

1,1-Bis(di­phenyl­phosphor­yl)hydrazine

2018, Höhne, Martha, Aluri, Bhaskar R., Spannenberg, Anke, Müller, Bernd H., Peulecke, Normen, Rosenthal, Uwe

The title compound, C24H22N2O2P2, contains a diphosphazane backbone, as well as a hydrazine entity. The P—N—P diphosphazane unit and the N-amine N atom are almost coplanar, and the O atoms of the Ph2P(O) units are oriented trans to each other with respect to the P...P axis. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by pairs of N—H...O hydrogen bonds, forming rings of graph-set motif R22(10).

Loading...
Thumbnail Image
Item

Di-μ-chlorido-bis­­({4-[bis­(tri­methylsilyl)amino]-6-chloro-2,2,8,8-tetra­methyl-5,7-bis­(tri­methylsilyl)-3,5,7-tri­aza-4,6-diphospha-2,8-disilanon-3-en-4-ido-κ2P,P′}palladium(II)) di­ethyl ether disolvate

2016, Höhne, Martha, Müller, Bernd H., Spannenberg, Anke, Rosenthal, Uwe

The title compound, [Pd2(C18H54Cl2N4P2Si6)2Cl2]·2C4H10O, features a dinuclear chloride-bridged palladium complex bearing two equivalents of the novel monoanionic mixed valent (λ3-P)—N—(λ5-P) ligand. A metal catalyzed coupling of two amino­imino­phosphines and a shift of one chlorine from the metal to the phospho­rus results in the (λ3-P)—N—(λ5-P) ligand. The mol­ecule contains a planar bimetallic Pd2Cl2 core with a crystallographic centre of inversion at the mid-point of the Pd⋯Pd line. The Pd atoms are in a distorted square-planar arrangement, where the P/Pd/P and Cl/Pd/Cl planes are twisted with respect to each other by a dihedral angle of 7.57 (4)°. The P—Pd—P bite angle is 71.380 (18)°. Intra­molecular C—H⋯Cl inter­actions are observed. In the crystal, the diethyl ether solvent mol­ecule is disordered over two sites, with an occupancy ratio of 0.788 (5):0.212 (5).