Search Results

Now showing 1 - 10 of 13
  • Item
    Bifunctional hydrogels containing the laminin motif IKVAV promote neurogenesis
    (Amsterdam : Elsevier, 2017) Farrukh, Aleeza; Ortega, Felipe; Fan, Wenqiang; Marichal, Nicolás; Paez, Julieta I.; Berninger, Benedikt; del Campo, Aránzazu; Salierno, Marcelo J.
    Engineering of biomaterials with specific biological properties has gained momentum as a means to control stem cell behavior. Here, we address the effect of bifunctionalized hydrogels comprising polylysine (PL) and a 19-mer peptide containing the laminin motif IKVAV (IKVAV) on embryonic and adult neuronal progenitor cells under different stiffness regimes. Neuronal differentiation of embryonic and adult neural progenitors was accelerated by adjusting the gel stiffness to 2 kPa and 20 kPa, respectively.While gels containing IKVAV or PL alone failed to support long-term cell adhesion, in bifunctional gels, IKVAV synergized with PL to promote differentiation and formation of focal adhesions containing b1-integrin in embryonic cortical neurons. Furthermore, in adult neural stem cell culture, bifunctionalized gels promoted neurogenesis via the expansion of neurogenic clones. These data highlight the potential of synthetic matrices to steer stem and progenitor cell behavior via defined mechano-adhesive properties.
  • Item
    Direction specific adhesion induced by subsurface liquid filled microchannels
    (Cambridge : Royal Society of Chemistry, 2012) Majumder, Abhijit; Mondal, Subrata; Tiwari, Anurag Kumar; Ghatak, Animangsu; Sharma, Ashutosh
    While directional effects in adhesion and locomotion have in general been generated by creating symmetry breaking topographic features on the surface of a soft bodied object, here we present a novel method for imparting this effect to thin adhesive layers by embedding liquid filled microchannels arranged in pairs with specific intra and inter pair distances. The adhesive exhibits uniform adhesion in classical peel tests when both the channels are filled with either air or a wetting liquid. But the asymmetric effect shows up when only one of the channels in the pair is filled with the liquid. The liquid alters the surface tension of the inner wall of the channel, which results in bulging deformation of the thin skin of the adhesive over the channel. The bulging however remains asymmetric, the extent of asymmetry depending on the intra-pair spacing between the channels. Besides the bulging effect, filling in one channel of a pair with liquid also leads to an asymmetric variation in its modulus. As a result, when an adherent is peeled off the adhesive from two opposite directions, significantly different adhesion strengths result. A similar directional effect also results when channels of two different diameters are used in the pair, thus opening up the possibility of generating several different adhesion strengths simply by altering the geometric features of the embedded microstructure and its filling status. We show also that for both channels in a pair filled with liquid, the adhesion strength increases significantly, by over 60 times of what is achieved for a smooth, featureless, adhesive layer.
  • Item
    On the behaviour of nanoparticles in oil-in-water emulsions with different surfactants
    (Cambridge : Royal Society of Chemistry, 2014) Lacava, Johann; Ouali, Ahmed-Amine; Raillard, Brice; Kraus, Tobias
    The distribution of narrowly dispersed gold nanoparticles in hexane-in-water emulsions was studied for different surfactants. Good surfactants such as SDS and Triton X-100 block the oil-water interfaces and confine particles in the droplet. Other surfactants (Tween 85 and Span 20) form synergistic mixtures with the nanoparticles at the interfaces that lower the surface tension more than any component. Supraparticles with fully defined particle distribution form in the droplets only for surfactants that block the interface. Other surfactants promote the formation of fcc agglomerates. Nanoparticles in emulsions behave markedly different from microparticles-their structure formation is governed by free energy minimization, while microparticles are dominated by kinetics.
  • Item
    Carbon onion–sulfur hybrid cathodes for lithium–sulfur batteries
    (Cambridge : Royal Society of Chemistry, 2017) Choudhury, Soumyadip; Zeiger, Marco; Massuti-Ballester, Pau; Fleischmann, Simon; Formanek, Petr; Borchardt, Lars; Presser, Volker
    In this study, we explore carbon onions (diameter below 10 nm), for the first time, as a substrate material for lithium sulfur cathodes. We introduce several scalable synthesis routes to fabricate carbon onion–sulfur hybrids by adopting in situ and melt diffusion strategies with sulfur fractions up to 68 mass%. The conducting skeleton of agglomerated carbon onions proved to be responsible for keeping active sulfur always in close vicinity to the conducting matrix. Therefore, the hybrids are found to be efficient cathodes for Li–S batteries, yielding 97–98% Coulombic efficiency over 150 cycles with a slow fading of the specific capacity (ca. 660 mA h g−1 after 150 cycles) in long term cycle test and rate capability experiments.
  • Item
    Lipid droplets as a novel cargo of tunnelling nanotubes in endothelial cells
    (London : Nature Publishing Group, 2015) Astanina, Ksenia; Koch, Marcus; Jüngst, Christian; Zumbusch, Andreas; Kiemer, Alexandra K.
    Intercellular communication is a fundamental process in the development and functioning of multicellular organisms. Recently, an essentially new type of intercellular communication, based on thin membrane channels between cells, has been reported. These structures, termed intercellular or tunnelling nanotubes (TNTs), permit the direct exchange of various components or signals (e.g., ions, proteins, or organelles) between non-adjacent cells at distances over 100 μm. Our studies revealed the presence of tunnelling nanotubes in microvascular endothelial cells (HMEC-1). The TNTs were studied with live cell imaging, environmental scanning electron microscopy (ESEM), and coherent anti-Stokes Raman scattering spectroscopy (CARS). Tunneling nanotubes showed marked persistence: the TNTs could connect cells over long distances (up to 150 μm) for several hours. Several cellular organelles were present in TNTs, such as lysosomes and mitochondria. Moreover, we could identify lipid droplets as a novel type of cargo in the TNTs. Under angiogenic conditions (VEGF treatment) the number of lipid droplets increased significantly. Arachidonic acid application not only increased the number of lipid droplets but also tripled the extent of TNT formation. Taken together, our results provide the first demonstration of lipid droplets as a cargo of TNTs and thereby open a new field in intercellular communication research.
  • Item
    Protein identity and environmental parameters determine the final physico-chemical properties of protein-coated metal nanoparticles
    (Washington D.C. : American Chemical Society, 2015) Dewald, Inna; Isakin, Olga; Schubert, Jonas; Kraus, Tobias; Chanana, Munish
    When a nanomaterial enters a biological system, proteins adsorb onto the particle surface and alter the surface properties of nanoparticles, causing drastic changes in physico-chemical properties such as hydrodynamic size, surface charge and aggregation state, thus giving a completely new and undefined physico-chemical identity to the nanoparticles. In the present work, we study the impact of the protein identity (molecular weight and isoelectric point) and the environmental conditions (pH and ionic strength) on the final physico-chemical properties of a model nanoparticle system, i.e. gold nanoparticles. Gold nanoparticles either form stable dispersions or agglomerate spontaneously when mixed with protein solutions, depending on the protein and the experimental conditions. Strikingly, the agglomerates redisperse to individually dispersed and colloidally stable nanoparticles, depending on the purification pH. The final protein coated nanoparticles exhibit specific stabilities and surface charges that depend on protein type and the conditions during its adsorption. By understanding the interactions of nanoparticles with proteins under controlled conditions, we can define the protein corona of the NPs and thus their physico-chemical properties in various media.
  • Item
    Sensor placement technique using BaTiO3/epoxy resin piezoelectric composite sensors based on differential imaging method for damage detection in structural health monitoring
    (Cambridge : arXiv, 2016) Taltavull Cazcarra, Adrià; Bareiro Ferreira, Oscar; Sridaran Venkat, Ramanan; Adam, Jens; Boller, Christian
    Structural Health Monitoring (SHM) is an emerging technology in many engineering disciplines that aims at designing systems being able to continuously monitor ageing of structures throughout their life span. Damage monitoring using guided waves (GWs) is one promising approach in that regard. Principally a network of integrated piezoelectric transducer patches (actuators and sensors) on a structure generates GWs, where the GWs propagate through the structure and relative information about the damage is finally obtained. Based on damage mechanics principles and damage tolerance criteria, the structure’s remaining useful life is then be determined from the data recorded by the transducers and the need for structural maintenance actions can finally be derived accordingly. The detectability of the growing structural damage is highly dependent on the placement of actuators and sensors. This therefore requires an optimum placement of those transducers to be found, which is obtained through simulation. This need for simulation becomes specifically relevant when structures are large and complex. A new approach presented within the paper proposed has therefore been developed, which is based on differential imaging/signals, where the differential is determined from the difference of the wave patterns between an undamaged and a damaged condition. The resulting topology of the differential signal is considered to define the shape/pattern of the respective piezoelectric transducers, which will be placed on the structural component considered using a defined coating process. The coating and monitoring process applied using a BaTiO3/epoxy resin will be demonstrated on a thin aluminium test coupon with three holes where a crack of tolerable length has originated from one of the holes due to fatigue loading and the coated piezoelectric composite transducer pattern for monitoring the crack has been defined from the output of guided wave FEM simulations.
  • Item
    Carbon onion / sulfur hybrid cathodes via inverse vulcanization for lithium sulfur batteries
    (Cambridge : Royal Society of Chemistry, 2017) Choudhury, Soumyadip; Srimuk, Pattarachai; Raju, Kumar; Tolosa, Aura; Fleischmann, Simon; Zeiger, Marco; Ozoemena, Kenneth I.; Borchardt, Lars; Presser, Volker
    A sulfur–1,3-diisopropenylbenzene copolymer was synthesized by ring-opening radical polymerization and hybridized with carbon onions at different loading levels. The carbon onion mixing was assisted by shear in a two-roll mill to capitalize on the softened state of the copolymer. The sulfur copolymer and the hybrids were thoroughly characterized in structure and chemical composition, and finally tested by electrochemical benchmarking. An enhancement of specific capacity was observed over 140 cycles at higher content of carbon onions in the hybrid electrodes. The copolymer hybrids demonstrate a maximum initial specific capacity of 1150 mA h gsulfur−1 (850 mA h gelectrode−1) and a low decay of capacity to reach 790 mA h gsulfur−1 (585 mA h gelectrode−1) after 140 charge/discharge cycles. All carbon onion/sulfur copolymer hybrid electrodes yielded high chemical stability, stable electrochemical performance superior to conventional melt-infiltrated reference samples having similar sulfur and carbon onion content. The amount of carbon onions embedded in the sulfur copolymer has a strong influence on the specific capacity, as they effectively stabilize the sulfur copolymer and sterically hinder the recombination of sulfur species to the S8 configuration.
  • Item
    Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy
    (London : Nature Publishing Group, 2013) Peckys, Diana B; Baudoin, Jean-Pierre; Eder, Magdalena; Werner, Ulf; de Jonge, Niels
    Imaging single epidermal growth factor receptors (EGFR) in intact cells is presently limited by the available microscopy methods. Environmental scanning electron microscopy (ESEM) of whole cells in hydrated state in combination with specific labeling with gold nanoparticles was used to localize activated EGFRs in the plasma membranes of COS7 and A549 cells. The use of a scanning transmission electron microscopy (STEM) detector yielded a spatial resolution of 3 nm, sufficient to identify the locations of individual EGFR dimer subunits. The sizes and distribution of dimers and higher order clusters of EGFRs were determined. The distance between labels bound to dimers amounted to 19 nm, consistent with a molecular model. A fraction of the EGFRs was found in higher order clusters with sizes ranging from 32–56 nm. ESEM can be used for quantitative whole cell screening studies of membrane receptors, and for the study of nanoparticle-cell interactions in general.
  • Item
    Discharge during detachment of micro-structured PDMS sheds light on the role of electrostatics in adhesion
    (Milton Park : Taylor & Francis, 2012) Brörmann, Katrin; Burger, Karin; Jagota, Anand; Bennewitz, Roland
    Light emission due to discharge in air is detected during and after the detachment of microstructured PDMS samples from glass surfaces, showing contact charging of the surfaces. The light emission provides information about the detachment process, like the velocity of the peeling front, which is difficult to obtain otherwise. While the work of separation exhibits the dependence on pulling velocity typically found for viscoelastic materials, the emission intensity exhibits almost no velocity dependence. We present a model for the rate-dependent contribution of a mosaic of contact charges to the work of separation. Also, the work of separation increases as expected with increasing aspect ratio of the microstructure, while the emission intensity shows a maximum for intermediate structures. Based on their different dependencies and on an upper-bound estimate of the energy emitted as light, we conclude that for the given system the contribution of electrostatic attraction to the work of separation is minor.