Search Results

Now showing 1 - 10 of 145
  • Item
    Resistive switching in polycrystalline YMnO3 thin films
    (New York, NY : American Inst. of Physics, 2014) Bogusz, A.; Müller, A.D.; Blaschke, D.; Skorupa, I.; Bürger, D.; Scholz, A.; Schmidt, O.G.; Schmidt, H.
    We report a unipolar, nonvolatile resistive switching in polycrystalline YMnO3 thin films grown by pulsed laser deposition and sandwiched between Au top and Ti/Pt bottom electrodes. The ratio of the resistance in the OFF and ON state is larger than 103. The observed phenomena can be attributed to the formation and rupture of conductive filaments within the multiferroic YMnO3 film. The generation of conductive paths under applied electric field is discussed in terms of the presence of grain boundaries and charged domain walls inherently formed in hexagonal YMnO3. Our findings suggest that engineering of the ferroelectric domains might be a promising route for designing and fabrication of novel resistive switching devices.
  • Item
    Payload charging events in the mesosphere and their impact on Langmuir type electric probes
    (München : European Geopyhsical Union, 2013) Bekkeng, T.A.; Barjatya, A.; Hoppe, U.-P.; Pedersen, A.; Moen, J.I.; Friedrich, M.; Rapp, M.
    Three sounding rockets were launched from Andøya Rocket Range in the ECOMA campaign in December 2010. The aim was to study the evolution of meteoric smoke particles during a major meteor shower. Of the various instruments onboard the rocket payload, this paper presents the data from a multi-Needle Langmuir Probe (m-NLP) and a charged dust detector. The payload floating potential, as observed using the m-NLP instrument, shows charging events on two of the three flights. These charging events cannot be explained using a simple charging model, and have implications towards the use of fixed bias Langmuir probes on sounding rockets investigating mesospheric altitudes. We show that for a reliable use of a single fixed bias Langmuir probe as a high spatial resolution relative density measurement, each payload should also carry an additional instrument to measure payload floating potential, and an instrument that is immune to spacecraft charging and measures absolute plasma density.
  • Item
    Schottky contacts to In2O3
    (New York : American Institute of Physics, 2014) von Wenckstern, H.; Splith, D.; Schmidt, F.; Grundmann, M.; Bierwagen, O.; Speck, J.S.
    n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.
  • Item
    Development of the mesospheric Na layer at 69 N during the Geminids meteor shower 2010
    (München : European Geopyhsical Union, 2013) Dunker, T.; Hoppe, U.-P.; Stober, G.; Rapp, M.
    The ECOMA sounding rocket campaign in 2010 was performed to investigate the charge state and number density of meteoric smoke particles during the Geminids meteor shower in December 2010. The ALOMAR Na lidar contributed to the campaign with measurements of sodium number density, temperature and line-of-sight wind between 80 and 110 km altitude over Andøya in northern Norway. This paper investigates a possible connection between the Geminids meteor shower and the mesospheric sodium layer. We compare with data from a meteor radar and from a rocket-borne in situ particle instrument on three days. Our main result is that the sodium column density is smaller during the Geminids meteor shower than the winter average at the same latitude. Moreover, during two of the three years considered, the sodium column density decreased steadily during these three weeks of the year. Both the observed decrease of Na column density by 30% and of meteoric smoke particle column density correlate well with a corresponding decrease of sporadic meteor echoes. We found no correlation between Geminids meteor flux rates and sodium column density, nor between sporadic meteors and Na column density (R = 0.25). In general, we found the Na column density to be at very low values for winter, between 1.8 and 2.6 × 1013 m−2. We detected two meteor trails containing sodium, on 13 December 2010 at 87.1 km and on 19 December 2010 at 84 km. From these meteor trails, we estimate a global meteoric Na flux of 121 kg d−1 and a global total meteoric influx of 20.2 t d−1.
  • Item
    Statistical characteristics of PMWE observations by the EISCAT VHF radar
    (München : European Geopyhsical Union, 2013) Strelnikova, I.; Rapp, M.
    In the present paper ~ 32.5 h of EISCAT VHF PMWE observations were analyzed with focus on spectral properties like spectral width, doppler shift and spectral shape. Examples from two days of observations with weak and strong polar mesosphere winter echo (PMWE) signals are presented and discussed in detail. These examples reveal a large variability from one case to the other. That is, some features like an observed change of vertical wind direction and spectral broadening can be very prominent in one case, but unnoticeable in the other case. However, for all observations a change of spectral shape inside the layer relative to the incoherent background is noticed.
  • Item
    Nanometer-resolved mechanical properties around GaN crystal surface steps
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2014) Buchwald, J.; Sarmanova, M.; Rauschenbach, B.; Mayr, S.G.
    The mechanical properties of surfaces and nanostructures deviate from their bulk counterparts due to surface stress and reduced dimensionality. Experimental indentation-based techniques present the challenge of measuring these effects, while avoiding artifacts caused by the measurement technique itself. We performed a molecular dynamics study to investigate the mechanical properties of a GaN step of only a few lattice constants step height and scrutinized its applicability to indentation experiments using a finite element approach (FEM). We show that the breakdown of half-space symmetry leads to an "artificial" reduction of the elastic properties of comparable lateral dimensions which overlays the effect of surface stress. Contact resonance atomic force microscopy (CR-AFM) was used to compare the simulation results with experiments.
  • Item
    Tandem dinucleophilic cyclization of cyclohexane-1,3-diones with pyridinium salts
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2013) Kiamehr, M.; Moghaddam, F.M.; Mkrtchyan, S.; Semeniuchenko, V.; Supe, L.; Villinger, A.; Langer, P.; Laroshenko, V.O.
    The cyclization of cyclohexane-1,3-diones with various substituted pyridinium salts afforded functionalized 8-oxa-10-aza-tricyclo[7.3.1.0 2,7]trideca-2(7),11-dienes. The reaction proceeds by regioselective attack of the central carbon atom of the 1,3-dicar-bonyl unit to 4-position of the pyridinium salt and subsequent cyclization by base-assisted proton migration and nucleophilic addition of the oxygen atom to the 2-position, as was elucidated by DFT computations. Fairly extensive screening of bases and additives revealed that the presence of potassium cations is essential for formation of the product.
  • Item
    Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core-shell magnetic nanoparticles
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2014) Hennes, M.; Lotnyk, A.; Mayr, S.G.
    Magnetically anisotropic as well as magnetic core-shell nanoparticles (CS-NPs) with controllable properties are highly desirable in a broad range of applications. With this background, a setup for the synthesis of heterostructured magnetic core-shell nanoparticles, which relies on (optionally pulsed) DC plasma gas condensation has been developed. We demonstrate the synthesis of elemental nickel nanoparticles with highly tunable sizes and shapes and Ni@Cu CS-NPs with an average shell thickness of 10 nm as determined with scanning electron microscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. An analytical model that relies on classical kinetic gas theory is used to describe the deposition of Cu shell atoms on top of existing Ni cores. Its predictive power and possible implications for the growth of heterostructured NP in gas condensation processes are discussed.
  • Item
    In situ measurements with CPC micro-actuators using SEM
    (Bellingham : SPIE, 2014) Kaasik, Friedrich; Must, Indrek; Lust, Enn; Jürgens, Meelis; Presser, Volker; Punning, Andres; Temmer, Rauno; Kiefer, Rudolf; Aabloo, Alvo
    Comparative measurements of carbon-polymer composite micro-actuators based on room temperature ionic liquid electrolyte were carried out in situ (1) in vacuum using a state-of-the-art scanning electron microscope, (2) in an oxygen-free atmosphere under ambient pressure, and (3) under ambient environment. The fabricated micro-actuators sustained their actuation performance in all three environments, revealing important implications regarding their humidity-dependence. SEM observations demonstrate high stroke actuation of a device with submillimeter length, which is the typical size range of actuators desirable for medical or lab-on-chip applications.
  • Item
    Geometric considerations of polar mesospheric summer echoes in tilted beams using coherent radar imaging
    (München : European Geopyhsical Union, 2014) Sommer, S.; Stober, G.; Chau, J.L.; Latteck, R.
    We present observations of polar mesospheric summer echoes (PMSE) using the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). The radar is able to resolve PMSE at high spatial and temporal resolution and to perform pulse-to-pulse beam steering. In this experiment, 81 oblique beam directions were used with off-zenith angles up to 25°. For each beam pointing direction and range gate, coherent radar imaging was applied to determine the mean backscatter location. The location of the mean scatterer in the beam volume was calculated by the deviation from the nominal off-zenith angle of the brightest pixel. It shows that in tilted beams with an off-zenith angle greater than 5°, structures appear at the altitudinal edges of the PMSE layer. Our results indicate that the mean influence of the location of the maximum depends on the tilt of the beam and on the observed area of the PMSE layer. At the upper/lower edge of the PMSE layer, the mean backscatter has a greater/smaller off-zenith angle than the nominal off-zenith angle. This effect intensifies with greater off-zenith beam pointing direction, so the beam filling factor plays an important role in the observation of PMSE layers for oblique beams.