Search Results

Now showing 1 - 2 of 2
  • Item
    Control of the emission wavelength of gallium nitride-based nanowire light-emitting diodes
    (Berlin : Humboldt-Universität zu Berlin, 2013) Wölz, Martin
    Halbleiter-Nanosäulen (auch -Nanodrähte) werden als Baustein für Leuchtdioden (LEDs) untersucht. Herkömmliche LEDs aus Galliumnitrid (GaN) bestehen aus mehreren Kristallschichten auf einkristallinen Substraten. Ihr Leistungsvermögen wird durch Gitterfehlpassung und dadurch hervorgerufene Verspannung, piezoelektrische Felder und Kristallfehler beschränkt. GaN-Nanosäulen können ohne Kristallfehler auf Fremdsubstraten gezüchtet werden. Verspannung wird in Nanosäulen elastisch an der Oberfläche abgebaut, dadurch werden Kristallfehler und piezoelektrische Felder reduziert. In dieser Arbeit wurden GaN-Nanosäulen durch Molukularstrahlepitaxie katalysatorfrei gezüchtet. Eine Machbarkeitsstudie über das Kristallwachstum von Halbleiter-Nanosäulen auf Metall zeigt, dass GaN-Nanosäulen in hoher Kristallqualität ohne einkristallines Substrat epitaktisch auf Titanschichten gezüchtet werden können. Für das Wachstum axialer (In,Ga)N/GaN Heterostrukturen in Nanosäulen wurden quantitative Modelle entwickelt. Die erfolgreiche Herstellung von Nanosäulen-LEDs auf Silizium-Wafern zeigt, dass dadurch eine Kontrolle der Emissionswellenlänge erreicht wird. Die Gitterverspannung der Heterostrukturen in Nanosäulen ist ungleichmäßig aufgrund des Spannungsabbaus an den Seitenwänden. Das katalysatorfreie Zuchtverfahren führt zu weiteren statistischen Schwankungen der Nanosäulendurchmesser und der Abschnittlängen. Die entstandene Zusammensetzung und Verspannung des (In,Ga)N-Mischkristalls wird durch Röntgenbeugung und resonant angeregte Ramanspektroskopie ermittelt. Infolge der Ungleichmäßigkeiten erfordert die Auswertung genaue Simulationsrechnungen. Eine einfache Näherung der mittleren Verspannung einzelner Abschnitte kann aus den genauen Rechnungen abgeleitet werden. Gezielte Verspannungseinstellung erfolgt durch die Wahl der Abschnittlängen. Die Wirksamkeit dieses allgemeingültigen Verfahrens wird durch die Bestimmung der Verspannung von (In,Ga)N-Abschnitten in GaN-Nanosäulen gezeigt.
  • Item
    Luminescence of group-III-V nanowires containing heterostructures – the role of polytypism, polarization fields and carrier localization
    (Berlin : Humboldt-Universität zu Berlin, 2013) Lähnemann, Jonas
    In dieser Dissertation wird die spektrale und örtliche Verteilung der Lumineszenz von Heterostrukturen in selbstorganisierten Nanodrähten (ND) mit Hilfe von Kathodolumineszenz-Spektroskopie (KL) im Rasterelektronenmikroskop untersucht. Diese Methode wird ergänzt durch Messungen der kontinuierlichen und zeitaufgelösten Mikro-Photolumineszenz. Drei verschiedene Strukturen werden behandelt: (i) GaAs-ND bestehend aus Segmenten der Wurtzit (WZ) bzw. Zinkblende (ZB) Kristallstrukturen, (ii) auf GaN-ND überwachsene GaN-Mikrokristalle und (iii) (In,Ga)N Einschlüsse in GaN-ND. Die gemischte Kristallstruktur der GaAs-ND führt zu komplexen Emissionsspektren. Dabei wird entweder ausschließlich Lumineszenz bei Energien unterhalb der ZB Bandlücke, oder aber zusätzlich bei höheren Energien, gemessen. Diese Differenz wird durch unterschiedliche Dicken der ZB und WZ Segmente erklärt. Messungen bei Raumtemperatur zeigen, dass die Bandlücke von WZ-GaAs mindestens 55 meV größer als die von ZB-GaAs ist. Die Lumineszenz-Spektren der GaN-Mikrokristalle enthalten verschiedene Emissionslinien, die auf Stapelfehler (SF) zurückzuführen sind. SF sind ZB Quantentöpfe verschiedener Dicke in einem WZ-Kristall und es wird gezeigt, dass ihre Emissionsenergie durch die spontane Polarisation bestimmt wird. Aus einer detaillierten statistischen Analyse der Emissionsenergien der verschiedenen SF-Typen werden Emissionsenergien von 3.42, 3.35 und 3.29 eV für die intrinsischen (I1 und I2) sowie für extrinsische SF ermittelt. Aus den entsprechenden Energiedifferenzen wird -0.022C/m² als experimenteller Wert für die spontane Polarisation von GaN bestimmt. Die Bedeutung sowohl der piezoelektrischen Polarisation als auch die der Lokalisierung von Ladungsträgern wird für (In,Ga)N-Einschlüsse in GaN-ND gezeigt. Hierbei spielt nicht nur die Lokalisierung von Exzitonen, sondern auch die individueller Elektronen und Löcher an unterschiedlichen Potentialminima eine Rolle.