Search Results

Now showing 1 - 5 of 5
  • Item
    Control of the emission wavelength of gallium nitride-based nanowire light-emitting diodes
    (Berlin : Humboldt-Universität zu Berlin, 2013) Wölz, Martin
    Halbleiter-Nanosäulen (auch -Nanodrähte) werden als Baustein für Leuchtdioden (LEDs) untersucht. Herkömmliche LEDs aus Galliumnitrid (GaN) bestehen aus mehreren Kristallschichten auf einkristallinen Substraten. Ihr Leistungsvermögen wird durch Gitterfehlpassung und dadurch hervorgerufene Verspannung, piezoelektrische Felder und Kristallfehler beschränkt. GaN-Nanosäulen können ohne Kristallfehler auf Fremdsubstraten gezüchtet werden. Verspannung wird in Nanosäulen elastisch an der Oberfläche abgebaut, dadurch werden Kristallfehler und piezoelektrische Felder reduziert. In dieser Arbeit wurden GaN-Nanosäulen durch Molukularstrahlepitaxie katalysatorfrei gezüchtet. Eine Machbarkeitsstudie über das Kristallwachstum von Halbleiter-Nanosäulen auf Metall zeigt, dass GaN-Nanosäulen in hoher Kristallqualität ohne einkristallines Substrat epitaktisch auf Titanschichten gezüchtet werden können. Für das Wachstum axialer (In,Ga)N/GaN Heterostrukturen in Nanosäulen wurden quantitative Modelle entwickelt. Die erfolgreiche Herstellung von Nanosäulen-LEDs auf Silizium-Wafern zeigt, dass dadurch eine Kontrolle der Emissionswellenlänge erreicht wird. Die Gitterverspannung der Heterostrukturen in Nanosäulen ist ungleichmäßig aufgrund des Spannungsabbaus an den Seitenwänden. Das katalysatorfreie Zuchtverfahren führt zu weiteren statistischen Schwankungen der Nanosäulendurchmesser und der Abschnittlängen. Die entstandene Zusammensetzung und Verspannung des (In,Ga)N-Mischkristalls wird durch Röntgenbeugung und resonant angeregte Ramanspektroskopie ermittelt. Infolge der Ungleichmäßigkeiten erfordert die Auswertung genaue Simulationsrechnungen. Eine einfache Näherung der mittleren Verspannung einzelner Abschnitte kann aus den genauen Rechnungen abgeleitet werden. Gezielte Verspannungseinstellung erfolgt durch die Wahl der Abschnittlängen. Die Wirksamkeit dieses allgemeingültigen Verfahrens wird durch die Bestimmung der Verspannung von (In,Ga)N-Abschnitten in GaN-Nanosäulen gezeigt.
  • Item
    Epitaxial growth of Ge-Sb-Te based phase change materials
    (Berlin : Humboldt-Universität zu Berlin, 2013) Perumal , Karthick
    Ge-Sb-Te basierte Phasenwechselmaterialen sind vielersprechende Kandidaten für die Anwendung in optischen und elektrischen nicht-flüchtigen Speicheranwendungen. Diese Materialien können mit Hilfe von elektrischen oder optischen Pulsen reversibel zwischen der kristallinen und amorphen Struktur geschaltet werden. Diese stukturellen Phasen zeigen einen großen Unterschied in ihren elektronischen Eigenschaften, der sich in einer starken Änderung der optischen Reflektivität und des elektrischen Widerstands zeigt.Diese Studie befasst sich mit epitaktischem Wachstum und Analyse der epitaktischen Schichten. Der erste Teil der Arbiet befasst sich mir dem epitaktischen Wachstum von GeTe. Dünne GeTe Schichten wurden auf Si(111) und Si(001) Substraten mit einer Gitterfehlanpassung von 10.8% präpariert. Auf beiden Substraten bildet sich in der GeTe Schicht die [111] Oberflächenfacette parallel zur Si(001) und Si(111) Oberfläche aus. Während des inertialen Wachstums findet eine Phasentransformation von amorph zu kristallin statt. Diese Phasentransformation wurde mittels azimuthaler in-situ Beugung hochenergetischer Elektronen sowie in-situ Röntgenbeugung unter streifendem Einfall untersucht. Der zweite Teil der Arbeit wird die Epitaxie sowie die strukturelle Charakterisierung dünner Sb2Te3 Schichten dargestellt. Der dritte Teil umfasst die Epitaxie terniärer Ge-Sb-Te Schichten . Zum Wachstum wurden sowohl die Substrattemperatur als auch die Ge, Sb und Te Flüsse variiert. Es wird gezeigt, dass die Komposition der Schicht stark von der Wachtumstemperatur abhängt und nur entlang der pseudibinären Verbindungslinie von GeTe-Sb2Te3 variiert. Zur Kontrolle des Wachstums wurde dabei die in-situ Quadrupol Massenspektroskopie verwendet. Es zeigen sich diverse inkommensurate Beugungsmaxima entlang der [111] Oberflächennormalen der Schichten, anhand derer die Ausbildung einer Lehrstellen Ordnung in Form einer Überstruktur diskutiert wird.
  • Item
    Luminescence of group-III-V nanowires containing heterostructures – the role of polytypism, polarization fields and carrier localization
    (Berlin : Humboldt-Universität zu Berlin, 2013) Lähnemann, Jonas
    In dieser Dissertation wird die spektrale und örtliche Verteilung der Lumineszenz von Heterostrukturen in selbstorganisierten Nanodrähten (ND) mit Hilfe von Kathodolumineszenz-Spektroskopie (KL) im Rasterelektronenmikroskop untersucht. Diese Methode wird ergänzt durch Messungen der kontinuierlichen und zeitaufgelösten Mikro-Photolumineszenz. Drei verschiedene Strukturen werden behandelt: (i) GaAs-ND bestehend aus Segmenten der Wurtzit (WZ) bzw. Zinkblende (ZB) Kristallstrukturen, (ii) auf GaN-ND überwachsene GaN-Mikrokristalle und (iii) (In,Ga)N Einschlüsse in GaN-ND. Die gemischte Kristallstruktur der GaAs-ND führt zu komplexen Emissionsspektren. Dabei wird entweder ausschließlich Lumineszenz bei Energien unterhalb der ZB Bandlücke, oder aber zusätzlich bei höheren Energien, gemessen. Diese Differenz wird durch unterschiedliche Dicken der ZB und WZ Segmente erklärt. Messungen bei Raumtemperatur zeigen, dass die Bandlücke von WZ-GaAs mindestens 55 meV größer als die von ZB-GaAs ist. Die Lumineszenz-Spektren der GaN-Mikrokristalle enthalten verschiedene Emissionslinien, die auf Stapelfehler (SF) zurückzuführen sind. SF sind ZB Quantentöpfe verschiedener Dicke in einem WZ-Kristall und es wird gezeigt, dass ihre Emissionsenergie durch die spontane Polarisation bestimmt wird. Aus einer detaillierten statistischen Analyse der Emissionsenergien der verschiedenen SF-Typen werden Emissionsenergien von 3.42, 3.35 und 3.29 eV für die intrinsischen (I1 und I2) sowie für extrinsische SF ermittelt. Aus den entsprechenden Energiedifferenzen wird -0.022C/m² als experimenteller Wert für die spontane Polarisation von GaN bestimmt. Die Bedeutung sowohl der piezoelektrischen Polarisation als auch die der Lokalisierung von Ladungsträgern wird für (In,Ga)N-Einschlüsse in GaN-ND gezeigt. Hierbei spielt nicht nur die Lokalisierung von Exzitonen, sondern auch die individueller Elektronen und Löcher an unterschiedlichen Potentialminima eine Rolle.
  • Item
    Advanced transmission electron microscopy investigation of nano-clustering in Gd-doped GaN
    (Berlin : Humboldt-Universität zu Berlin, 2014) Wu, Mingjian
    The central goal of this dissertation is (1) to clarify the distribution of Gd atoms in GaN:Gd with Gd concentration in the range between 10^16–10^19 cm^-3 by means of advanced (scanning) transmission electron microscopy [(S)TEM]; and based on that, (2) to understand the mechanisms that control such distribution. We discuss in detail the application and limitations of (S)TEM imaging and analysis techniques and modeling methods dedicated to the study of embedded nano-clusters. Besides, two case studies of semiconductor material systems that contain apparently observable nano-clusters are considered. One is about intentionally grown InAs nano-clusters embedded in Si and the other study the formation and phase transformation of Bi-containing clusters in annealed GaAsBi epilayers. Finally, we are able to identify the occurrence of GdN clusters in GaN:Gd samples and to determine their atomic structure. Strain contrast imaging in conjunction with contrast simulation unambiguously identifies the occurrence of small, platelet-shaped GdN clusters. These clusters are nearly uniform in size with their broader face parallel to the GaN (0001) basal plane. The result is confirmed by dark-field STEM Z-contrast imaging. The strong local lattice distortion (displacement field) induced by the clusters is recorded by HRTEM images and quantitatively analyzed. By comparing the displacement fields which are analyzed experimentally with these fields that are derived from energetically favored models, we conclude that the clusters are bilayer GdN with platelet diameter of only few Gd atoms; their internal structure is close to rocksalt GdN. This atomic structure model enables our discussion about the energetics of the clusters. The results indicate that the driving force for the formation of observed platelet in specific size is a compromise between the gain in cohesive energy and the penalty from interfacial strain energy due to lattice mismatch between the GdN cluster and GaN host.
  • Item
    Direct growth and characterization of graphene layers on insulating substrates
    (Berlin : Humboldt-Universität zu Berlin, 2014) Schumann, Timo
    This thesis presents an investigation of graphene growth directly on insulating substrates. The graphene films are characterized using different techniques, including atomic force microscopy, Raman spectroscopy, and grazing-incidence X-ray diffraction. These allowed insight into the morphological, structural, and electrical properties of the graphene layers. Two different preparation methods were employed. The growth of epitaxial graphene on SiC(0001) by surface Si depletion is presented first. An important parameter in this type of growth is the surface steps present on the SiC substrate. We show that the initial SiC surface step configuration has little influence on the growth process, and the resulting graphene layers. The surface steps do impact the magneto-transport properties of graphene on SiC, which is investigated closely and can be explained by a schematic model. The structure of the epitaxial graphene layers is also analyzed, including precise measurements of the lattice constants. Additionally, the growth of graphene on the C-face of SiC is investigated. Graphene films were also synthesized directly on insulating substrates using molecular beam epitaxy. With the accurate deposition rates and sub-monolayer thickness control, MBE allows for fundamental studies of the growth process. We demonstrate graphene growth on two different substrates. The dependence of the morphology and structural quality of the graphene samples on the growth parameters is evaluated and discussed. We find that graphene films grown by MBE consist of nanocrystalline graphene domains with lateral dimensions exceeding 30 nm. The structural quality of the graphene layers improves with increasing substrate temperature during growth. Finally, we show that the nanocrystalline domains of the graphene films possess an epitaxial relation to either substrate, and attribute an observed contraction of the graphene lattice constant to the presence of point-defects within the film.