Search Results

Now showing 1 - 10 of 44
  • Item
    Surviving the surf: The tribomechanical properties of the periostracum of Mytilus sp
    (Amsterdam : Elsevier, 2014) Wählisch, Felix C.; Peter, Nicolas J.; Torrents Abad, Oscar; Oliveira, Mariana V.G.; Schneider, Andreas S.; Schmahl, Wolfgang; Griesshaber, Erika; Bennewitz, Roland
    We investigated the friction and wear behavior as well as the mechanical properties of the periostracum of Mytilus sp. Tribological properties were determined with a reciprocal sliding microtribometer, while mechanical characterization was performed using a nanoindenter. Measurements were performed in dry and wet conditions. On the dry periostracum we found a low friction coefficient of 0.078 ± 0.007 on the young parts and a higher one of 0.63 ± 0.02 on the old parts of the shell. Under wet, saline, conditions we only observed one average coefficient of friction of 0.37 ± 0.01. Microscopic ex situ analysis indicated that dry periostracum wore rather rapidly by plowing and fatigue, while it exhibited a high wear resistance when immersed in salt water. The Young’s modulus and hardness of the periostracum were also investigated in both dry and wet conditions. Under dry conditions the Young’s modulus of the periostracum was 8 ± 3 GPa, while under wet conditions it was 0.21 ± 0.05 GPa. The hardness of dry periostracum samples was 353 ± 127 MPa, whereas the hardness of wet samples was 5 ± 2 MPa. It was found that, in the wet state, viscous behavior plays a significant role in the mechanical response of the periostracum. Our results strongly indicate that the periostracum can provide an important contribution to the overall wear resistance of Mytilus sp. shell.
  • Item
    Real-time monitoring of calcium carbonate and cationic peptide deposition on carboxylate-SAM using a microfluidic SAW biosensor
    (Frankfurt am Main : Beilstein-Institut, 2014) Pohl, Anna; Weiss, Ingrid M.
    A microfluidic biosensor with surface acoustic wave technology was used in this study to monitor the interaction of calcium carbonate with standard carboxylate self-assembled monolayer sensor chips. Different fluids, with and without biomolecular components, were investigated. The pH-dependent surface interactions of two bio-inspired cationic peptides, AS8 and ES9, which are similar to an extracellular domain of the chitin synthase involved in mollusc shell formation, were also investigated in a biological buffer system. A range of experimental conditions are described that are suitable to study non-covalent molecular interactions in the presence of ionic substances, such as, mineral precursors below the solubility equilibrium. The peptide ES9, equal to the mollusc chitin synthase epitope, is less sensitive to changes in pH than its counterpart AS8 with a penta-lysine core, which lacks the flanking acidic residues. This study demonstrates the extraordinary potential of microfluidic surface acoustic wave biosensors to significantly expand our experimental capabilities for studying the principles underlying biomineralization in vitro.
  • Item
    In situ measurements with CPC micro-actuators using SEM
    (Bellingham : SPIE, 2014) Kaasik, Friedrich; Must, Indrek; Lust, Enn; Jürgens, Meelis; Presser, Volker; Punning, Andres; Temmer, Rauno; Kiefer, Rudolf; Aabloo, Alvo
    Comparative measurements of carbon-polymer composite micro-actuators based on room temperature ionic liquid electrolyte were carried out in situ (1) in vacuum using a state-of-the-art scanning electron microscope, (2) in an oxygen-free atmosphere under ambient pressure, and (3) under ambient environment. The fabricated micro-actuators sustained their actuation performance in all three environments, revealing important implications regarding their humidity-dependence. SEM observations demonstrate high stroke actuation of a device with submillimeter length, which is the typical size range of actuators desirable for medical or lab-on-chip applications.
  • Item
    Carbons and electrolytes for advanced supercapacitors
    (Hoboken, NJ : Wiley, 2014) Presser, Volker
    Electrical energy storage (EES) is one of the most critical areas of technological research around the world. Storing and efficiently using electricity generated by intermittent sources and the transition of our transportation fleet to electric drive depend fundamentally on the development of EES systems with high energy and power densities. Supercapacitors are promising devices for highly efficient energy storage and power management, yet they still suffer from moderate energy densities compared to batteries. To establish a detailed understanding of the science and technology of carbon/carbon supercapacitors, this review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes. We summarize the key aspects of various carbon materials synthesized for use in supercapacitors. With the objective of improving the energy density, the last two sections are dedicated to strategies to increase the capacitance by either introducing pseudocapacitive materials or by using novel electrolytes that allow to increasing the cell voltage. In particular, advances in ionic liquids, but also in the field of organic electrolytes, are discussed and electrode mass balancing is expanded because of its importance to create higher performance asymmetric electrochemical capacitors.
  • Item
    Surface-assisted laser desorption/ionization mass spectrometry using ordered silicon nanopillar arrays
    (Cambridge : Royal Society of Chemistry, 2014) Alhmoud, Hashim Z.; Guinan, Taryn M.; Elnathan, Roey; Kobus, Hilton; Voelcker, Nicolas H.
    Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is ideally suited for the high-throughput analysis of small molecules in bodily fluids (e.g. saliva, urine, and blood plasma). A key application for this technique is the testing of drug consumption in the context of workplace, roadside, athlete sports and anti-addictive drug compliance. Here, we show that vertically-aligned ordered silicon nanopillar (SiNP) arrays fabricated using nanosphere lithography followed by metal-assisted chemical etching (MACE) are suitable substrates for the SALDI-MS detection of methadone and small peptides. Porosity, length and diameter are fabrication parameters that we have explored here in order to optimize analytical performance. We demonstrate the quantitative analysis of methadone in MilliQ water down to 32 ng mL-1. Finally, the capability of SiNP arrays to facilitate the detection of methadone in clinical samples is also demonstrated.
  • Item
    One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes
    (Cambridge : Royal Society of Chemistry, 2014) Naguib, Michael; Mashtalir, Olhar; Lukatskaya, Maria R.; Dyatkin, Boris; Zhang, Chuanfang; Presser, Volker; Gogotsi, Yuri; Barsoum, Michael W.
    Herein we show that heating 2D Ti3C2 in air results in TiO2 nanocrystals enmeshed in thin sheets of disordered graphitic carbon structures that can handle extremely high cycling rates when tested as anodes in lithium ion batteries. Oxidation of 2D Ti3C2 in either CO2 or pressurized water also resulted in TiO2–C hybrid structures. Similarly, other hybrids can be produced, as we show here for Nb2O5/C from 2D Nb2C.
  • Item
    Adhesion behavior of polymer networks with tailored mechanical properties using spherical and flat contacts
    (Cambridge : Cambridge University Press, 2013) Lakhera, Nishant; Graucob, Annalena; Schneider, Andreas S.; Kroner, Elmar; Micciché, Maurizio; Arzt, Eduard; Frick, Carl P.
    Four acrylate-based networks were developed such that they possessed similar glass transition temperature (~-37 °C) but varied in material stiffness at room temperature by an order of magnitude (2-12 MPa). Thermo-mechanical and adhesion testing were performed to investigate the effect of elastic modulus on adhesion profiles of the developed samples. Adhesion experiments with a spherical probe revealed no dependency of the pull-off force on material modulus as predicted by the Johnson, Kendall, and Roberts theory. Results obtained using a flat probe showed that the pull-off force increases linearly with an increase in the material modulus, which matches very well with Kendall's theory.
  • Item
    Surface structure influences contact killing of bacteria by copper
    (Hoboken, NJ : Wiley, 2014) Zeiger, Marco; Solioz, Marc; Edongué, Hervais; Arzt, Eduard; Schneider, Andreas S.
    Copper kills bacteria rapidly by a mechanism that is not yet fully resolved. The antibacterial property of copper has raised interest in its use in hospitals, in place of plastic or stainless steel. On the latter surfaces, bacteria can survive for days or even weeks. Copper surfaces could thus provide a powerful accessory measure to curb nosocomial infections. We here investigated the effect of the copper surface structure on the efficiency of contact killing of Escherichia coli, an aspect which so far has received very little attention. It was shown that electroplated copper surfaces killed bacteria more rapidly than either polished copper or native rolled copper. The release of ionic copper was also more rapid from electroplated copper compared to the other materials. Scanning electron microscopy revealed that the bacteria nudged into the grooves between the copper grains of deposited copper. The findings suggest that, in terms of contact killing, more efficient copper surfaces can be engineered.
  • Item
    Synthesis and characterization of aluminum doped zinc oxide nanostructures via hydrothermal route
    (London : Hindawi, 2014) Alkahlout, Amal; Al Dahoudi, Naji; Grobelsek, Ingrid; Jilavi, Mohammad; Oliveira de, Peter W.
    Stable crystalline aluminum doped zinc oxide (AZO) nanopowders were synthesized using hydrothermal treatment processing. Three different aluminum precursors have been used. The Al-precursors were found to affect the morphology of the obtained nanopowders. AZO nanoparticles based on zinc acetate and aluminum nitrate have been prepared with different Al/Zn molar ratios. XRD investigations revealed that all the obtained powders have single phase zincite structure with purity of about 99%. The effect of aluminum doping ratio in AZO nanoparticles (based on Al-nitrate precursor) on structure, phase composition, and particle size has been investigated. The incorporation of Al in ZnO was confirmed by UV-Vis spectroscopy revealing a blue shift due to Burstein-Moss effect.
  • Item
    Force microscopy of layering and friction in an ionic liquid
    (Bristol : IOP Publishing, 2014) Hoth, Judith; Hausen, Florian; Müser, Martin H.; Bennewitz, Roland
    The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip–sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface.