Search Results

Now showing 1 - 10 of 30
  • Item
    Origami-Inspired Shape Memory Folding Microactuator
    (Basel : MDPI, 2020) Seigner, Lena; Bezsmertna, Olha; Fähler, Sebastian; Tshikwand, Georgino; Wendler, Frank; Kohl, Manfred
    This paper presents the design, fabrication and performance of origami-based folding microactuators based on a cold-rolled NiTi foil of 20 µm thickness showing the one-way shape memory effect. Origami refers to a variety of techniques of transforming planar sheets into three-dimensional (3D) structures by folding, which has been introduced in science and engineering for, e.g., assembly and robotics. Here, NiTi microactuators are interconnected to rigid sections (tiles) forming an initial planar system that self-folds into a set of predetermined 3D shapes upon heating. While this concept has been demonstrated at the macro scale, we intend to transfer this concept into microtechnology by combining state-of-the art methods of micromachining. NiTi foils are micromachined by laser cutting or photolithography to achieve double-beam structures allowing for direct Joule heating with an electrical current. A thermo-mechanical treatment is used for shape setting of as-received specimens to reach a maximum folding angle of 180°. The bending moments, bending radii and load-dependent folding angles upon Joule heating are evaluated. The shape setting process is particularly effective for small bending radii, which, however generates residual plastic strain. After shape setting, unloaded beam structures show recoverable bending deflection between 0° and 140° for a maximum heating power of 900 mW. By introducing additional loads to account for the effect of the tiles, the smooth folding characteristic evolves into a sharp transition, whereby full deflection up to 180° is reached. The achieved results are an important step towards the development of cooperative multistable microactuator systems for 3D self-assembly.
  • Item
    Directly Anodized Sulfur-Doped TiO2 Nanotubes as Improved Anodes for Li-ion Batteries
    (Basel : MDPI, 2020) Sabaghi, Davood; Madian, Mahmoud; Omar, Ahmad; Oswald, Steffen; Uhlemann, Margitta; Maghrebi, Morteza; Baniadam, Majid; Mikhailova, Daria
    TiO2 represents one of the promising anode materials for lithium ion batteries due to its high thermal and chemical stability, relatively high theoretical specific capacity and low cost. However, the electrochemical performance, particularly for mesoporous TiO2, is limited and must be further developed. Elemental doping is a viable route to enhance rate capability and discharge capacity of TiO2 anodes in Li-ion batteries. Usually, elemental doping requires elevated temperatures, which represents a challenge, particularly for sulfur as a dopant. In this work, S-doped TiO2 nanotubes were successfully synthesized in situ during the electrochemical anodization of a titanium substrate at room temperature. The electrochemical anodization bath represented an ethylene glycol-based solution containing NH4F along with Na2S2O5 as the sulfur source. The S-doped TiO2 anodes demonstrated a higher areal discharge capacity of 95 µAh·cm−2 at a current rate of 100 µA·cm−2 after 100 cycles, as compared to the pure TiO2 nanotubes (60 µAh·cm−2). S-TiO2 also exhibited a significantly improved rate capability up to 2500 µA·cm−2 as compared to undoped TiO2. The improved electrochemical performance, as compared to pure TiO2 nanotubes, is attributed to a lower impedance in S-doped TiO2 nanotubes (STNTs). Thus, the direct S-doping during the anodization process is a promising and cost-effective route towards improved TiO2 anodes for Li-ion batteries.
  • Item
    Towards Bacteria Counting in DI Water of Several Microliters or Growing Suspension Using Impedance Biochips
    (Basel : MDPI, 2020) Kiani, Mahdi; Tannert, Astrid; Du, Nan; Hübner, Uwe; Skorupa, Ilona; Bürger, Danilo; Zhao, Xianyue; Blaschke, Daniel; Rebohle, Lars; Cherkouk, Charaf; Neugebauer, Ute; Schmidt, Oliver G.; Schmidt, Heidemarie
    We counted bacterial cells of E. coli strain K12 in several-microliter DI water or in several-microliter PBS in the low optical density (OD) range (OD = 0.05–1.08) in contact with the surface of Si-based impedance biochips with ring electrodes by impedance measurements. The multiparameter fit of the impedance data allowed calibration of the impedance data with the concentration cb of the E. coli cells in the range of cb = 0.06 to 1.26 × 109 cells/mL. The results showed that for E. coli in DI water and in PBS, the modelled impedance parameters depend linearly on the concentration of cells in the range of cb = 0.06 to 1.26 × 109 cells/mL, whereas the OD, which was independently measured with a spectrophotometer, was only linearly dependent on the concentration of the E. coli cells in the range of cb = 0.06 to 0.50 × 109 cells/mL.
  • Item
    Floating zone growth of Bi2Sr2Ca2Cu3Oy superconductor
    (Basel : MDPI, 2016) Maljuk, Andrey; Lin, C.T.
    The crystal growth of high-temperature oxide superconductors has been hampered by the complexities of these materials and the lack of knowledge of corresponding phase diagrams. The most common crystal growth technique adopted for these materials is the so-called “Flux” method. This method, however, suffers from several drawbacks: (i) crystals are often crucible and flux contaminated; (ii) crystals are difficult to detach from solidified melt; and (iii) crystals are rather small. In most cases, these drawbacks can be overcome by the crucible-free floating zone method. Moreover, this technique is suitable for crystal growth of incongruently melting compounds, and has been thus successfully used to make large single crystals of Bi2Sr2Ca2Cu3Oy superconductor. In this review, the authors summarize the published and their own growth efforts as well as detailed characterization of as-grown and post-growth annealed samples. The optimal growth conditions that allowed one to obtain the large-size, almost single phase and homogeneous in composition Bi2Sr2Ca2Cu3Oy single crystals are presented. The effect of long lasting post-growth heat treatment on both crystal quality and superconducting properties has also been demonstrated.
  • Item
    Graphene-Like ZnO: A Mini Review
    (Basel : MDPI, 2016) Ta, Huy Q.; Zhao, Liang; Pohl, Darius; Pang, Jinbo; Trzebicka, Barbara; Rellinghaus, Bernd; Pribat, Didier; Gemming, Thomas; Liu, Zhongfan; Bachmatiuk, Alicja; Rümmeli, Mark H.
    The isolation of a single layer of graphite, known today as graphene, not only demonstrated amazing new properties but also paved the way for a new class of materials often referred to as two-dimensional (2D) materials. Beyond graphene, other 2D materials include h-BN, transition metal dichalcogenides (TMDs), silicene, and germanene, to name a few. All tend to have exciting physical and chemical properties which appear due to dimensionality effects and modulation of their band structure. A more recent member of the 2D family is graphene-like zinc oxide (g-ZnO) which also holds great promise as a future functional material. This review examines current progress in the synthesis and characterization of g-ZnO. In addition, an overview of works dealing with the properties of g-ZnO both in its pristine form and modified forms (e.g., nano-ribbon, doped material, etc.) is presented. Finally, discussions/studies on the potential applications of g-ZnO are reviewed and discussed.
  • Item
    Tungsten as a chemically-stable electrode material on Ga-containing piezoelectric substrates langasite and catangasite for high-temperature saw devices
    (Basel : MDPI, 2016) Rane, Gayatri K.; Seifert, Marietta; Menzel, Siegfried; Gemming, Thomas; Eckert, Jürgen
    Thin films of tungsten on piezoelectric substrates La3Ga5SiO14 (LGS) and Ca3TaGa3Si2O14 (CTGS) have been investigated as a potential new electrode material for interdigital transducers for surface acoustic wave-based sensor devices operating at high temperatures up to 800 °C under vacuum conditions. Although LGS is considered to be suitable for high-temperature applications, it undergoes chemical and structural transformation upon vacuum annealing due to diffusion of gallium and oxygen. This can alter the device properties depending on the electrode nature, the annealing temperature, and the duration of the application. Our studies present evidence for the chemical stability of W on these substrates against the diffusion of Ga/O from the substrate into the film, even upon annealing up to 800 °C under vacuum conditions using Auger electron spectroscopy and energy-dispersive X-ray spectroscopy, along with local studies using transmission electron microscopy. Additionally, the use of CTGS as a more stable substrate for such applications is indicated.
  • Item
    Non-isothermal kinetic analysis of the crystallization of metallic glasses using the master curve method
    (Basel : MDPI, 2011) Torrens-Serra, Joan; Venkataraman, Shankar; Stoica, Mihai; Kuehn, Uta; Roth, Stefan; Eckert, Jürgen
    The non-isothermal transformation rate curves of metallic glasses are analyzed with the Master Curve method grounded in the Kolmogorov-Johnson-Mehl-Avrami theory. The method is applied to the study of two different metallic glasses determining the activation energy of the transformation and the experimental kinetic function that is analyzed using Avrami kinetics. The analysis of the crystallization of Cu47Ti33Zr11Ni8Si1 metallic glassy powders gives Ea = 3.8 eV, in good agreement with the calculation by other methods, and a transformation initiated by an accelerating nucleation and diffusion-controlled growth. The other studied alloy is a Nanoperm-type Fe77Nb7B15Cu1 metallic glass with a primary crystallization of bcc-Fe. An activation energy of Ea = 5.7 eV is obtained from the Master Curve analysis. It is shown that the use of Avrami kinetics is not able to explain the crystallization mechanisms in this alloy giving an Avrami exponent of n = 1.
  • Item
    Evaluation of surface cleaning procedures for CTGS substrates for SAW technology with XPS
    (Basel : MDPI, 2017) Brachmann, Erik; Seifert, Marietta; Oswald, Steffen; Menzel, Siegfried B.; Gemming, Thomas
    A highly efficient and reproducible cleaning procedure of piezoelectric substrates is essential in surface acoustic waves (SAW) technology to fabricate high-quality SAW devices, especially for new applications such SAW sensors wherein new materials for piezoelectric substrates and interdigital transducers are used. Therefore, the development and critical evaluation of cleaning procedures for each material system that is under consideration becomes crucial. Contaminants like particles or the presence of organic/inorganic material on the substrate can dramatically influence and alter the properties of the thin film substrate composite, such as wettability, film adhesion, film texture, and so on. In this article, focus is given to different cleaning processes like SC-1 and SC-2, UV-ozone treatment, as well as cleaning by first-contact polymer Opticlean, which are applied for removal of contaminants from the piezoelectric substrate Ca 3 TaGa 3 Si 2 O 14 . By means of X-ray photoelectron spectroscopy, the presence of the most critical contaminants such as carbon, sodium, and iron removed through different cleaning procedures were studied and significant differences were observed between the outcomes of these procedures. Based on these results, a two-step cleaning process, combining SC-1 at a reduced temperature at 30 ∘ C instead of 80 ∘ C and a subsequent UV-ozone cleaning directly prior to deposition of the metallization, is suggested to achieve the lowest residual contamination level.
  • Item
    Surface effects and challenges for application of piezoelectric langasite substrates in surface acoustic wave devices caused by high temperature annealing under high vacuum
    (Basel : MDPI, 2015) Seifert, Marietta; Rane, Gayatri K.; Kirbus, Benjamin; Menzel, Siegfried B.; Gemming, Thomas
    Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.
  • Item
    Carbon nanotubes filled with ferromagnetic materials
    (Basel : MDPI, 2010) Weissker, Uhland; Hampel, Silke; Leonhardt, Albrecht; Büchner, Bernd
    Carbon nanotubes (CNT) filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD) methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.