Search Results

Now showing 1 - 2 of 2
  • Item
    Simultaneous observations of NLCs and MSEs at midlatitudes: Implications for formation and advection of ice particles
    (Göttingen : Copernicus GmbH, 2018) Gerding, M.; Zöllner, J.; Zecha, M.; Baumgarten, K.; Höffner, J.; Stober, G.; Lübken, F.-J.
    We combined ground-based lidar observations of noctilucent clouds (NLCs) with collocated, simultaneous radar observations of mesospheric summer echoes (MSEs) in order to compare ice cloud altitudes at a midlatitude site (Kühlungsborn, Germany, 54° N, 12° E). Lidar observations are limited to larger particles ( > 10 nm), while radars are also sensitive to small particles ( < 10 nm), but require sufficient ionization and turbulence at the ice cloud altitudes. The combined lidar and radar data set thus includes some information on the size distribution within the cloud and through this on the of the cloud. The soundings for this study are carried out by the IAP Rayleigh-Mie-Raman (RMR) lidar and the OSWIN VHF radar. On average, there is no difference between the lower edges (lowNLC and lowMSE). The mean difference of the upper edges upNLC and upMSE is g1/4 500 m, which is much less than expected from observations at higher latitudes. In contrast to high latitudes, the MSEs above our location typically do not reach much higher than the NLCs. In addition to earlier studies from our site, this gives additional evidence for the supposition that clouds containing large enough particles to be observed by lidar are not formed locally but are advected from higher latitudes. During the advection process, the smaller particles in the upper part of the cloud either grow and sediment, or they sublimate. Both processes result in a thinning of the layer. High-altitude MSEs, usually indicating nucleation of ice particles, are rarely observed in conjunction with lidar observations of NLCs at Kühlungsborn. © Author(s) 2018.
  • Item
    The impact of mineral dust on cloud formation during the Saharan dust event in April 2014 over Europe
    (Göttingen : Copernicus GmbH, 2018) Weger, M.; Heinold, B.; Engler, C.; Schumann, U.; Seifert, A.; Fößig, R.; Voigt, C.; Baars, H.; Blahak, U.; Borrmann, S.; Hoose, C.; Kaufmann, S.; Krämer, M.; Seifert, P.; Senf, F.; Schneider, J.; Tegen, I.
    A regional modeling study on the impact of desert dust on cloud formation is presented for a major Saharan dust outbreak over Europe from 2 to 5 April 2014. The dust event coincided with an extensive and dense cirrus cloud layer, suggesting an influence of dust on atmospheric ice nucleation. Using interactive simulation with the regional dust model COSMO-MUSCAT, we investigate cloud and precipitation representation in the model and test the sensitivity of cloud parameters to dust-cloud and dust-radiation interactions of the simulated dust plume. We evaluate model results with ground-based and spaceborne remote sensing measurements of aerosol and cloud properties, as well as the in situ measurements obtained during the ML-CIRRUS aircraft campaign. A run of the model with single-moment bulk microphysics without online dust feedback considerably underestimated cirrus cloud cover over Germany in the comparison with infrared satellite imagery. This was also reflected in simulated upper-Tropospheric ice water content (IWC), which accounted for only 20 % of the observed values. The interactive dust simulation with COSMO-MUSCAT, including a two-moment bulk microphysics scheme and dust-cloud as well as dust-radiation feedback, in contrast, led to significant improvements. The modeled cirrus cloud cover and IWC were by at least a factor of 2 higher in the relevant altitudes compared to the noninteractive model run. We attributed these improvements mainly to enhanced deposition freezing in response to the high mineral dust concentrations. This was corroborated further in a significant decrease in ice particle radii towards more realistic values, compared to in situ measurements from the ML-CIRRUS aircraft campaign. By testing different empirical ice nucleation parameterizations, we further demonstrate that remaining uncertainties in the ice-nucleating properties of mineral dust affect the model performance at least as significantly as including the online representation of the mineral dust distribution. Dust-radiation interactions played a secondary role for cirrus cloud formation, but contributed to a more realistic representation of precipitation by suppressing moist convection in southern Germany. In addition, a too-low specific humidity in the 7 to 10 km altitude range in the boundary conditions was identified as one of the main reasons for misrepresentation of cirrus clouds in this model study.