Search Results

Now showing 1 - 2 of 2
  • Item
    The global aerosol-climate model echam6.3-ham2.3 -Part 1: Aerosol evaluation
    (Göttingen : Copernicus GmbH, 2019) Tegen, I.; Neubauer, D.; Ferrachat, S.; Drian, C.S.-L.; Bey, I.; Schutgens, N.; Stier, P.; Watson-Parris, D.; Stanelle, T.; Schmidt, H.; Rast, S.; Kokkola, H.; Schultz, M.; Schroeder, S.; Daskalakis, N.; Barthel, S.; Heinold, B.; Lohmann, U.
    We introduce and evaluate aerosol simulations with the global aerosol-climate model ECHAM6.3-HAM2.3, which is the aerosol component of the fully coupled aerosol-chemistry-climate model ECHAM-HAMMOZ. Both the host atmospheric climate model ECHAM6.3 and the aerosol model HAM2.3 were updated from previous versions. The updated version of the HAM aerosol model contains improved parameterizations of aerosol processes such as cloud activation, as well as updated emission fields for anthropogenic aerosol species and modifications in the online computation of sea salt and mineral dust aerosol emissions. Aerosol results from nudged and free-running simulations for the 10-year period 2003 to 2012 are compared to various measurements of aerosol properties. While there are regional deviations between the model and observations, the model performs well overall in terms of aerosol optical thickness, but may underestimate coarse-mode aerosol concentrations to some extent so that the modeled particles are smaller than indicated by the observations. Sulfate aerosol measurements in the US and Europe are reproduced well by the model, while carbonaceous aerosol species are biased low. Both mineral dust and sea salt aerosol concentrations are improved compared to previous versions of ECHAM-HAM. The evaluation of the simulated aerosol distributions serves as a basis for the suitability of the model for simulating aerosol-climate interactions in a changing climate.
  • Item
    MAgPIE 4-a modular open-source framework for modeling global land systems
    (Göttingen : Copernicus GmbH, 2019) Dietrich, J.P.; Bodirsky, B.L.; Humpenöder, F.; Weindl, I.; Stevanović, M.; Karstens, K.; Kreidenweis, U.; Wang, X.; Mishra, A.; Klein, D.; Ambrósio, G.; Araujo, E.; Yalew, A.W.; Baumstark, L.; Wirth, S.; Giannousakis, A.; Beier, F.; Meng-Chuen, Chen, D.; Lotze-Campen, H.; Popp, A.
    The open-source modeling framework MAgPIE (Model of Agricultural Production and its Impact on the Environment) combines economic and biophysical approaches to simulate spatially explicit global scenarios of land use within the 21st century and the respective interactions with the environment. Besides various other projects, it was used to simulate marker scenarios of the Shared Socioeconomic Pathways (SSPs) and contributed substantially to multiple IPCC assessments. However, with growing scope and detail, the non-linear model has become increasingly complex, computationally intensive and non-transparent, requiring structured approaches to improve the development and evaluation of the model. Here, we provide an overview on version 4 of MAgPIE and how it addresses these issues of increasing complexity using new technical features: modular structure with exchangeable module implementations, flexible spatial resolution, in-code documentation, automatized code checking, model/output evaluation and open accessibility. Application examples provide insights into model evaluation, modular flexibility and region-specific analysis approaches. While this paper is focused on the general framework as such, the publication is accompanied by a detailed model documentation describing contents and equations, and by model evaluation documents giving insights into model performance for a broad range of variables. With the open-source release of the MAgPIE 4 framework, we hope to contribute to more transparent, reproducible and collaborative research in the field. Due to its modularity and spatial flexibility, it should provide a basis for a broad range of land-related research with economic or biophysical, global or regional focus.