Search Results

Now showing 1 - 9 of 9
  • Item
    Modified bibenzimidazole ligands as spectator ligands in photoactive molecular functional Ru-polypyridine units? Implications from spectroscopy
    (Cambridge : RSC, 2014) Meyer-Ilse, J.; Bauroth, S.; Bräutigam, M.; Schmitt, M.; Popp, J.; Beckert, R.; Rockstroh, N.; Pilz, T.D.; Monczak, K.; Heinemann, F.W.; Rau, S.; Dietzek, B.
    The photophysical properties of Ruthenium-bipyridine complexes bearing a bibenzimidazole ligand were investigated. The nitrogens on the bibenzimidazole-ligand were protected, by adding either a phenylene group or a 1,2-ethandiyl group, to remove the photophysical dependence of the complex on the protonation state of the bibenzimidazole ligand. This protection results in the bibenzimidazole ligand contributing to the MLCT transition, which is experimentally evidenced by (resonance) Raman scattering in concert with DFT calculations for a detailed mode assignment in the (resonance) Raman spectra.
  • Item
    Ruthenium(II)-bis(4'-(4-ethynylphenyl)-2,2':6', 2''-terpyridine) - A versatile synthon in supramolecular chemistry. Synthesis and characterization
    (Warsaw : Central European Science Journals, 2011) Siebert, R.; Schlütter, F.; Winter, A.; Presselt, M.; Görls, H.; Schubert, U.S.; Dietzek, B.; Popp, J.
    A homoleptic ethynyl-substituted ruthenium(II)-bisterpyridine complex representing a versatile synthon in supramolecular chemistry was synthesized and analyzed by NMR spectroscopy, mass spectrometry and X-ray diffractometry. Furthermore, its photophysical properties were detailed by UV/Vis absorption, emission and resonance Raman spectroscopy. In order to place the results obtained in the context of the vast family of ruthenium coordination compounds, two structurally related complexes were investigated accordingly. These reference compounds bear either no or an increased chromophore in the 4̀-position. The spectroscopic investigations reveal a systematic bathochromic shift of the absorption and emission maximum upon increasing chromophore size. This bathochromic shift of the steady state spectra occurs hand in hand with increasing resonance Raman intensities upon excitation of the metal-to-ligand charge-transfer transition. The latter feature is accompanied by an increased excitation delocalization over the chromophore in the 4̀-position of the terpyridine. Thus, the results presented allow for a detailed investigation of the electronic effects of the ethynyl substituent on the metal-to-ligand charge-transfer states in the synthon for click reactions leading to coordination polymers.
  • Item
    Evaluation of colloids and activation agents for determination of melamine using UV-SERS
    (Washington, DC : American Chemical Society, 2012) Kämmer, E.; Dörfer, T.; Csáki, A.; Schumacher, W.; Da Costa Filho, P.A.; Tarcea, N.; Fritzsche, W.; Rösch, P.; Schmitt, M.; Popp, J.
    UV-SERS measurements offer a great potential for environmental or food (detection of food contaminats) analytics. Here, the UV-SERS enhancement potential of various kinds of metal colloids, such as Pd, Pt, Au, Ag, Au-Ag core-shell, and Ag-Au core-shell with different shapes and sizes, were studied using melamine as a test molecule. The influence of different activation (KF, KCl, KBr, K 2SO 4) agents onto the SERS activity of the nanomaterials was investigated, showing that the combination of a particular nanoparticle with a special activation agent is extremely crucial for the observed SERS enhancement. In particular, the size dependence of spherical nanoparticles of one particular metal on the activator has been exploited. By doing so, it could be shown that the SERS enhancement increases or decreases for increasing or decreasing size of a nanoparticle, respectively. Overall, the presented results demonstrate the necessity to adjust the nanoparticle size and the activation agent for different experiments in order to achieve the best possible UV-SERS results.
  • Item
    Light-triggered CO release from nanoporous non-wovens
    (London [u.a.] : Royal Society of Chemistry, 2014) Bohlender, C.; Gläser, S.; Klein, M.; Weisser, J.; Thein, S.; Neugebauer, U.; Popp, J.; Wyrwa, R.; Schiller, A.
    The water insoluble and photoactive CO releasing molecule dimanganese decacarbonyl (CORM-1) has been non-covalently embedded into poly(l-lactide-co-d/ l-lactide) fibers via electrospinning to enable bioavailability and water accessibility of CORM-1. SEM images of the resulting hybrid non-wovens reveal a nanoporous fiber morphology. Slight CO release from the CORM-1 in the electrospinning process induces nanoporosity. IR spectra show the same set of carbonyl bands for the CORM-1 precursor and the non-woven. When the material was exposed to light (365-480 nm), CO release from the incorporated CORM-1 was measured via heterogeneous myoglobin assay, a portable CO electrode and an IR gas cuvette. The CO release rate was wavelength dependent. Irradiation at 365 nm resulted in four times faster release than at 480 nm. 3.4 μmol of CO per mg non-woven can be generated. Mouse fibroblast 3T3 cells were used to show that the hybrid material is non-toxic in the darkness and strongly photocytotoxic when light is applied.
  • Item
    Time-resolved study of site-specific corrosion in a single crystalline silver nanoparticle
    (Berlin : SpringerOpen, 2019) Trautmann, Steffen; Dathe, André; Csáki, Andrea; Thiele, Matthias; Müller, Robert; Fritzsche, Wolfgang; Stranik, Ondrej
    We followed over 24 h a corrosion process in monocrystalline triangular-shaped nanoparticles at a single-particle level by atomic force microscopy and optical spectroscopy techniques under ambient laboratory conditions. The triangular-shaped form of the particles was selected, because the crystallographic orientation of the particles is well defined upon their deposition on a substrate. We observed that the particles already start to alter within this time frame. Surprisingly, the corrosion starts predominantly from the tips of the particles and it creates within few hours large protrusions, which strongly suppress the plasmon character of the particles. These observations support the crystallographic model of these particles consisting of a high-defect hexagonal closed packed layer, and they could help material scientists to design more stable silver nanoparticles. Moreover, this described technique can be used to reveal kinetics of the corrosion in the nanoscale of other materials.
  • Item
    Fusion of MALDI Spectrometric Imaging and Raman Spectroscopic Data for the Analysis of Biological Samples
    (Lausanne : Frontiers Media, 2018) Ryabchykov, Oleg; Popp, Jürgen; Bocklitz, Thomas W.
    Despite of a large number of imaging techniques for the characterization of biological samples, no universal one has been reported yet. In this work, a data fusion approach was investigated for combining Raman spectroscopic data with matrix-assisted laser desorption/ionization (MALDI) mass spectrometric data. It betters the image analysis of biological samples because Raman and MALDI information can be complementary to each other. While MALDI spectrometry yields detailed information regarding the lipid content, Raman spectroscopy provides valuable information about the overall chemical composition of the sample. The combination of Raman spectroscopic and MALDI spectrometric imaging data helps distinguishing different regions within the sample with a higher precision than would be possible by using either technique. We demonstrate that a data weighting step within the data fusion is necessary to reveal additional spectral features. The selected weighting approach was evaluated by examining the proportions of variance within the data explained by the first principal components of a principal component analysis (PCA) and visualizing the PCA results for each data type and combined data. In summary, the presented data fusion approach provides a concrete guideline on how to combine Raman spectroscopic and MALDI spectrometric imaging data for biological analysis.
  • Item
    Studies on the Controlled Release of Drugs from Magnetic Nanobiocomposites
    (Palembang : Sriwijaya University, 2019) Heinze, Thomas; Müller, Robert; Zhou, Mengbo; Rabel, Martin; Warncke, Paul; Fischer, Dagmar
    Magnetic nanocomposites are a class of smart materials that have attracted recent interest as drug delivery systems or as medical implants. In this study, meltable nanobiocomposites (NBC) composed of biocompatible dextran fatty acid ester and magnetic nanoparticles (MNPs) melting close to human body temperature were prepared and loaded with Rhodamine B (RhB) or green fluorescent protein (GFP) as model drugs to evaluate their potential use as drug delivery system. The release of the model drugs from the magnetic NBC investigated under the influence of a high frequent alternating magnetic field (AMF, 20 kA/m at 400 kHz) showed that on-demand release is realized applying the external AMF. The NBC showed a long-term stability (28 d) of the incorporated iron oxide particles after incubation in artificial body fluids. This work reveals the potential of the NBC as a drug carrier.
  • Item
    Local protonation control using plasmonic activation
    (Cambridge : RSC, 2001) Singh, P.; Deckert, V.
    Localized protonation of 4-mercaptopyridine (4-MPY), activated by light in the presence of silver nanoparticles is monitored under ambient conditions using surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). The reaction can be controlled by the excitation wavelength and the atmospheric conditions, thus, providing a tool for site-specific control of protonation.
  • Item
    Design of a scalable AuNP catalyst system for plasmon-driven photocatalysis
    (Cambridge : Royal Society of Chemistry, 2018) Stolle, H.L.K.S.; Garwe, F.; Müller, R.; Krech, T.; Oberleiter, B.; Rainer, T.; Fritzsche, W.; Stolle, A.
    In this work we present a simple, fast and cost-efficient synthesis of a metal nanoparticle catalyst on a glass support for plasmon driven heterogeneous photocatalysis. It is based on efficient mixing of metal salts as particle precursors with porous glass as the supporting material in a mixer ball mill, and the subsequent realization of a complete catalyst system by laser sintering the obtained powder on a glass plate as the support. By this, we could obtain catalyst systems with a high particle proportion and an even spatial particle distribution in a rapid process, which could be applied to various kinds of metal salt resulting in plasmon active metal nanoparticles. Furthermore, the catalyst production process presented here is easily scalable to any size of area that is to be coated. Finally, we demonstrate the catalytic performance of our catalysts by a model reaction of ethanol degradation in a self-designed lab-scale reactor.