Search Results

Now showing 1 - 10 of 15
Loading...
Thumbnail Image
Item

The molecular structure of 1,2:5,6-Di-O-isopropylidene-3-otoluenesulfonyl- α-D-glucofuranose

2012, Mamat, C., Peppel, T., Köckerling, M.

The crystal and molecular structure of 1,2:5,6-di-O-isopropylidene-3-Otoluenesulfonyl- α-D-glucofuranose is reported. This compound crystallizes from a petroleum ether/ethyl acetate mixture with the chiral orthorhombic space group P212121 with four molecules in the unit cell. The unit cell parameters are: a = 9.7945(7) Å, b = 10.1945(7) Å, c = 21.306(1) Å, and V = 2127.4(2) Å3. No classical hydrogen bonds were found. Bond lengths and angles of this tosylated glucofuranose derivative are typical.

Loading...
Thumbnail Image
Item

Filled carbon nanotubes as anode materials for lithium-ion batteries

2020, Thauer, E., Ottmann, A., Schneider, P., Möller, L., Deeg, L., Zeus, R., Wilhelmi, F., Schlestein, L., Neef, C., Ghunaim, R., Gellesch, M., Nowka, C., Scholz, M., Haft, M., Wurmehl, S., Wenelska, K., Mijowska, E., Kapoor, A., Bajpai, A., Hampel, S., Klingeler, R.

Downsizing well-established materials to the nanoscale is a key route to novel functionalities, in particular if different functionalities are merged in hybrid nanomaterials. Hybrid carbon-based hierarchical nanostructures are particularly promising for electrochemical energy storage since they combine benefits of nanosize effects, enhanced electrical conductivity and integrity of bulk materials. We show that endohedral multiwalled carbon nanotubes (CNT) encapsulating high-capacity (here: conversion and alloying) electrode materials have a high potential for use in anode materials for lithium-ion batteries (LIB). There are two essential characteristics of filled CNT relevant for application in electrochemical energy storage: (1) rigid hollow cavities of the CNT provide upper limits for nanoparticles in their inner cavities which are both separated from the fillings of other CNT and protected against degradation. In particular, the CNT shells resist strong volume changes of encapsulates in response to electrochemical cycling, which in conventional conversion and alloying materials hinders application in energy storage devices. (2) Carbon mantles ensure electrical contact to the active material as they are unaffected by potential cracks of the encapsulate and form a stable conductive network in the electrode compound. Our studies confirm that encapsulates are electrochemically active and can achieve full theoretical reversible capacity. The results imply that encapsulating nanostructures inside CNT can provide a route to new high-performance nanocomposite anode materials for LIB.

Loading...
Thumbnail Image
Item

Out of the lab and into the bathroom: Evening short-term exposure to conventional light suppresses melatonin and increases alertness perception

2013, Wahnschaffe, A., Haedel, S., Rodenbeck, A., Stoll, C., Rudolph, H., Kozakov, R., Schoepp, H., Kunz, D.

Life in 24-h society relies on the use of artificial light at night that might disrupt synchronization of the endogenous circadian timing system to the solar day. This could have a negative impact on sleep-wake patterns and psychiatric symptoms. The aim of the study was to investigate the influence of evening light emitted by domestic and work place lamps in a naturalistic setting on melatonin levels and alertness in humans. Healthy subjects (6 male, 3 female, 22-33 years) were exposed to constant dim light (<10 lx) for six evenings from 7:00 p.m. to midnight. On evenings 2 through 6, 1 h before habitual bedtime, they were also exposed to light emitted by 5 different conventional lamps for 30 min. Exposure to yellow light did not alter the increase of melatonin in saliva compared to dim light baseline during (38 ± 27 pg/mL vs. 39 ± 23 pg/mL) and after light exposure (39 ± 22 pg/mL vs. 44 ± 26 pg/mL). In contrast, lighting conditions including blue components reduced melatonin increase significantly both during (office daylight white: 25 ± 16 pg/mL, bathroom daylight white: 24 ± 10 pg/mL, Planon warm white: 26 ± 14 pg/mL, hall daylight white: 22 ± 14 pg/mL) and after light exposure (office daylight white: 25 ± 15 pg/mL, bathroom daylight white: 23 ± 9 pg/mL, Planon warm white: 24 ± 13 pg/mL, hall daylight white: 22 ± 26 pg/mL). Subjective alertness was significantly increased after exposure to three of the lighting conditions which included blue spectral components in their spectra. Evening exposure to conventional lamps in an everyday setting influences melatonin excretion and alertness perception within 30 min.

Loading...
Thumbnail Image
Item

Evaluation of osseointegration of titanium alloyed implants modified by plasma polymerization

2014, Gabler, C., Zietz, C., Göhler, R., Fritsche, A., Lindner, T., Haenle, M., Finke, B., Meichsner, J., Lenz, S., Frerich, B., Lüthen, F., Nebe, J.B., Bader, R.

By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V) coated with plasma-polymerized allylamine (PPAAm) and plasma-polymerized ethylenediamine (PPEDA) versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC) was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%). Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5%) and implants with PPEDA a significantly increased BIC (63.7%). In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces.

Loading...
Thumbnail Image
Item

Syntheses, crystal structure and magnetic properties of Tl9RETe6 (RE = Ce, Sm, Gd)

2020, Isaeva, A., Schönemann, R., Doert, T.

The three compounds Tl9RETe6 with RE = Ce, Sm, Gd were synthesized from the elements at 1020 K. Their isostructural crystal structures are ordered derivatives of the Tl5Te3 type with rare-earth metal and thallium occupying different Wyckoff positions. The structures can be understood as charge-ordered in accordance with the Zintl-Klemm concept: 9 Tl+ + RE3+ + 6 Te2-. DFT calculations for Tl9GdTe6, however, result in a low, but finite density of states at the Fermi level. Magnetic data confirm trivalent Gd, but indicate a small amount of Ce4+ in Tl9CeTe6; no indications for long-range magnetic order was found down to T = 2 K.

Loading...
Thumbnail Image
Item

Electron beam-induced immobilization of laccase on porous supports for waste water treatment applications

2014, Jahangiri, E., Reichelt, S., Thomas, I., Hausmann, K., Schlosser, D., Schulze, A.

The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a "green" water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate) mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 μm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste-water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA). Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel-than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state.

Loading...
Thumbnail Image
Item

Preparation and cycling performance of iron or iron oxide containing amorphous Al-Li alloys as electrodes

2014, Thoss, F., Giebeler, L., Weißer, K., Feller, J., Eckert, J.

Crystalline phase transitions cause volume changes, which entails a fast destroying of the electrode. Non-crystalline states may avoid this circumstance. Herein we present structural and electrochemical investigations of pre-lithiated, amorphous Al39Li43Fe13Si5-powders, to be used as electrode material for Li-ion batteries. Powders of master alloys with the compositions Al39Li43Fe13Si5 and Al39Li43Fe13Si5 + 5 mass-% FeO were prepared via ball milling and achieved amorphous/nanocrystalline states after 56 and 21.6 h, respectively. In contrast to their Li-free amorphous pendant Al78Fe13Si9, both powders showed specific capacities of about 400 and 700 Ah/kgAl, respectively, after the third cycle.

Loading...
Thumbnail Image
Item

Influence of MoS2 on activity and stability of carbon nitride in photocatalytic hydrogen production

2019, Sivasankaran, R.P., Rockstroh, N., Kreyenschulte, C.R., Bartling, S., Lund, H., Acharjya, A., Junge, H., Thomas, A., Brückner, A.

MoS2/C3N4 (MS-CN) composite photocatalysts have been synthesized by three different methods, i.e., in situ-photodeposition, sonochemical, and thermal decomposition. The crystal structure, optical properties, chemical composition, microstructure, and electron transfer properties were investigated by X-ray diffraction, UV-vis diffuse reflectance spectroyscopy, X-ray photoelectron spectroscopy, electron microscopy, photoluminescence, and in situ electron paramagnetic resonance spectroscopy. During photodeposition, the 2H MoS2 phase was formed upon reduction of [MoS4]2− by photogenerated conduction band electrons and then deposited on the surface of CN. A thin crystalline layer of 2H MoS2 formed an intimate interfacial contact with CN that favors charge separation and enhances the photocatalytic activity. The 2H MS-CN phase showed the highest photocatalytic H2 evolution rate (2342 µmol h−1 g−1, 25 mg catalyst/reaction) under UV-vis light irradiation in the presence of lactic acid as sacrificial reagent and Pt as cocatalyst.

Loading...
Thumbnail Image
Item

Effects of Promoter on Structural and Surface Properties of Zirconium Oxide-Based Catalyst Materials

2020, Borovinskaya, E.S., Oswald, S., Reschetilowski, W.

Ternary mixed oxide systems CuO/ZnO/ZrO2 and CuO/NiO/ZrO2 were synthesized by one-pot synthesis for a better understanding of the synthesis-property relationships of zirconium oxide-based catalyst materials. The prepared mixed oxide samples were analysed by a broad range of characterisation methods (XRD, N2-physisorption, Temperature-Programmed Ammonia Desorption (TPAD), and XPS) to examine the structural and surface properties, as well as to identify the location of the potential catalytically active sites. By XPS analysis, it could be shown that a progressive enrichment of the surface composition with copper takes place by changing from ZnO to NiO as a promoter. Thus, by addition of the second component, not only electronic but also the geometric properties of active sites, i.e., copper species distribution within the catalyst surface, can be affected in a desired way.

Loading...
Thumbnail Image
Item

Structure formation of ultrathin PEO films at solid interfaces-complex pattern formation by dewetting and crystallization

2013, Braun, H.-G., Meyer, E.

The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups.