Search Results

Now showing 1 - 4 of 4
  • Item
    Investigation of horizontal structures at mesospheric altitudes using coherent radar imaging
    (Göttingen : Copernicus, 2013) Sommer, S.; Stober, G.; Schult, C.; Zecha, M.; Latteck, R.
    The Middle Atmosphere Alomar Radar System (MAARSY) in Northern Norway (69.30°N, 16.04°E) was used to perform interferometric observations of Polar Mesosperic Summer Echoes (PMSE) in June 2012. Coherent Radar Imaging (CRI) using Capon's method was applied allowing a high spatial resolution. The algorithm was validated by simulation and trajectories of meteor head echoes. Both data sets show a good correspondence with the algorithm. Using this algorithm, the aspect sensitivity of PMSE was analysed in a case study, making use of the capability of CRI to resolve the pattern within the beam volume. No correction of the beam pattern was made yet. It was found in this case study, that no large variations in the scattering width and the scattering center occured apart from a very short period of time at the upper edge of the PMSE.
  • Item
    Photoelectron holography in strong optical and dc electric fields
    (Bristol : Institute of Physics Publishing, 2014) Stodolna, A.; Huismans, Y.; Rouzée, A.; Lépine, F.; Vrakking, M.J.J.
    The application of velocity map imaging for the detection of photoelectrons resulting from atomic or molecular ionization allows the observation of interferometric, and in some cases holographic structures that contain detailed information on the target from which the photoelecrons are extracted. In this contribution we present three recent examples of the use of photoelectron velocity map imaging in experiments where atoms are exposed to strong optical and dc electric fields. We discuss (i) observations of the nodal structure of Stark states of hydrogen measured in a dc electric field, (ii) mid-infrared strong-field ionization of metastable Xe atoms and (iii) the reconstruction of helium electronic wavepackets in an attosecond pump-probe experiment. In each case, the interference between direct and indirect electron pathways, reminiscent of the reference and signal waves in holography, is seen to play an important role.
  • Item
    Autocorrected off-axis holography of two-dimensional materials
    (College Park, ML : American Physical Society, 2020) Kern, Felix; Linck, Martin; Wolf, Daniel; Alem, Nasim; Arora, Himani; Gemming, Sibylle; Erbe, Artur; Zettl, Alex; Büchner, Bernd; Lubk, Axel
    The reduced dimensionality in two-dimensional materials leads to a wealth of unusual properties, which are currently explored for both fundamental and applied sciences. In order to study the crystal structure, edge states, the formation of defects and grain boundaries, or the impact of adsorbates, high-resolution microscopy techniques are indispensable. Here we report on the development of an electron holography (EH) transmission electron microscopy (TEM) technique, which facilitates high spatial resolution by an automatic correction of geometric aberrations. Distinguished features of EH beyond conventional TEM imaging are gap-free spatial information signal transfer and higher dose efficiency for certain spatial frequency bands as well as direct access to the projected electrostatic potential of the two-dimensional material. We demonstrate these features with the example of h-BN, for which we measure the electrostatic potential as a function of layer number down to the monolayer limit and obtain evidence for a systematic increase of the potential at the zig-zag edges.
  • Item
    Holographic vector field electron tomography of three-dimensional nanomagnets
    (London : Nature Publishing Group, 2019) Wolf, D.; Biziere, N.; Sturm, S.; Reyes, D.; Wade, T.; Niermann, T.; Krehl, J.; Warot-Fonrose, B.; Büchner, B.; Snoeck, E.; Gatel, C.; Lubk, A.
    Complex 3D magnetic textures in nanomagnets exhibit rich physical properties, e.g., in their dynamic interaction with external fields and currents, and play an increasing role for current technological challenges such as energy-efficient memory devices. To study these magnetic nanostructures including their dependency on geometry, composition, and crystallinity, a 3D characterization of the magnetic field with nanometer spatial resolution is indispensable. Here we show how holographic vector field electron tomography can reconstruct all three components of magnetic induction as well as the electrostatic potential of a Co/Cu nanowire with sub 10 nm spatial resolution. We address the workflow from acquisition, via image alignment to holographic and tomographic reconstruction. Combining the obtained tomographic data with micromagnetic considerations, we derive local key magnetic characteristics, such as magnetization current or exchange stiffness, and demonstrate how magnetization configurations, such as vortex states in the Co-disks, depend on small structural variations of the as-grown nanowire.