Search Results

Now showing 1 - 10 of 10
  • Item
    Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10nm aerosol nanoparticles
    (Katlenburg-Lindau : Copernicus, 2020) Lei, Ting; Ma, Nan; Hong, Juan; Tuch, Thomas; Wang, Xin; Wang, Zhibin; Pöhlker, Mira; Ge, Maofa; Wang, Weigang; Mikhailov, Eugene; Hoffmann, Thorsten; Pöschl, Ulrich; Su, Hang; Wiedensohler, Alfred; Cheng, Yafang
    Interactions between water and nanoparticles are relevant for atmospheric multiphase processes, physical chemistry, and materials science. Current knowledge of the hygroscopic and related physicochemical properties of nanoparticles, however, is restricted by the limitations of the available measurement techniques. Here, we present the design and performance of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. Detailed methods of calibration and validation are provided. Besides maintaining accurate and stable sheath and aerosol flow rates (1 %), high accuracy of the differential mobility analyzer (DMA) voltage (0:1 %) in the range of 0-50V is crucial for achieving accurate sizing and small sizing offsets between the two DMAs (1:4 %). To maintain a stable relative humidity (RH), the humidification system and the second DMA are placed in a well-insulated and air conditioner housing (0:1 K). We also tested and discussed different ways of preventing predeliquescence in the second DMA. Our measurement results for ammonium sulfate nanoparticles are in good agreement with Biskos et al. (2006b), with no significant size effect on the deliquescence and efflorescence relative humidity (DRH and ERH, respectively) at diameters down to 6 nm. For sodium sulfate nanoparticles, however, we find a pronounced size dependence of DRH and ERH between 20 and 6 nm nanoparticles. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    New particle formation and sub-10nm size distribution measurements during the A-LIFE field experiment in Paphos, Cyprus
    (Katlenburg-Lindau : EGU, 2020) Brilke, Sophia; Fölker, Nikolaus; Kandler, Konrad; Müller, Thomas; Gong, Xianda; Peischl, Jeff; Weinzierl, Bernadett; Winkler, Paul M.
    Atmospheric particle size distributions were measured in Paphos, Cyprus, during the A-LIFE (absorbing aerosol layers in a changing climate: ageing, lifetime and dynamics) field experiment from 3 to 30 April 2017. The newly developed differential mobility analyser train (DMAtrain) was deployed for the first time in an atmospheric environment for the direct measurement of the nucleation mode size range between 1.8 and 10 nm diameter. The DMA-train set-up consists of seven size channels, of which five are set to fixed particle mobility diameters and two additional diameters are obtained by alternating voltage settings in one DMA every 10 s. In combination with a conventional mobility particle size spectrometer (MPSS) and an aerodynamic particle sizer (APS) the complete atmospheric aerosol size distribution from 1.8 nm to 10 μ m was covered. The focus of the A-LIFE study was to characterize new particle formation (NPF) in the eastern Mediterranean region at a measurement site with strong local pollution sources. The nearby Paphos airport was found to be a large emission source for nucleation mode particles, and we analysed the size distribution of the airport emission plumes at approximately 500 m from the main runway. The analysis yielded nine NPF events in 27 measurement days from the combined analysis of the DMAtrain, MPSS and trace gas monitors. Growth rate calculations were performed, and a size dependency of the initial growth rate (< 10 nm) was observed for one event case. Fast changes of the sub-10 nm size distribution on a timescale of a few minutes were captured by the DMA-train measurement during early particle growth and are discussed in a second event case. In two cases, particle formation and growth were detected in the nucleation mode size range which did not exceed the 10 nm threshold. This finding implies that NPF likely occurs more frequently than estimated from studies where the lower nanometre size regime is not covered by the size distribution measurements. © 2020 Author(s).
  • Item
    Particle hygroscopicity during atmospheric new particle formation events: Implications for the chemical species contributing to particle growth
    (Göttingen : Copernicus, 2013) Wu, Z.; Birmili, W.; Poulain, L.; Poulain, L.; Merkel, M.; Fahlbusch, B.; Van Pinxteren, D.; Herrmann, H.; Wiedensohler, A.
    This study examines the hygroscopicity of newly formed particles (diameters range 25-45 nm) during two atmospheric new particle formation (NPF) events in the German mid-level mountains during the Hill Cap Cloud Thuringia 2010 (HCCT-2010) field experiment. At the end of the NPF event involving clear particle growth, we measured an unusually high soluble particle fraction of 58.5% at 45 nm particle size. The particle growth rate contributed through sulfuric acid condensation only accounts for around 6.5% of the observed growth rate. Estimations showed that sulfuric acid condensation explained, however, only around 10% of that soluble particle fraction. Therefore, the formation of additional water-soluble matter appears imperative to explain the missing soluble fraction. Although direct evidence is missing, we consider water-soluble organics as candidates for this mechanism. For the case with clear growth process, the particle growth rate was determined by two alternative methods based on tracking the mode diameter of the nucleation mode. The mean particle growth rate obtained from the inter-site data comparison using Lagrangian consideration is 3.8 (± 2.6) nm h-1. During the same period, the growth rate calculated based on one site data is 5.0 nm h-1 using log-normal distribution function method. In light of the fact that considerable uncertainties could be involved in both methods, we consider both estimated growth rates consistent.
  • Item
    Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain
    (Göttingen : Copernicus, 2014) Chen, J.; Zhao, C.S.; Ma, N.; Yan, P.
    The relative humidity (RH) dependence of aerosol light scattering is an essential parameter for accurate estimation of the direct radiative forcing induced by aerosol particles. Because of insufficient information on aerosol hygroscopicity in climate models, a more detailed parameterization of hygroscopic growth factors and resulting optical properties with respect to location, time, sources, aerosol chemistry and meteorology are urgently required. In this paper, a retrieval method to calculate the aerosol hygroscopicity parameter, κ, is proposed based on the in situ measured aerosol light scattering enhancement factor, namely f(RH), and particle number size distribution (PNSD) obtained from the HaChi (Haze in China) campaign. Measurements show that f(RH) increases sharply with increasing RH, and that the time variance of f(RH) is much greater at higher RH. A sensitivity analysis reveals that the f(RH) is more sensitive to the aerosol hygroscopicity than PNSD. f(RH) for polluted cases is distinctly higher than that for clean periods at a specific RH. The derived equivalent κ, combined with the PNSD measurements, is applied in the prediction of the cloud condensation nuclei (CCN) number concentration. The predicted CCN number concentration with the derived equivalent κ agrees well with the measured ones, especially at high supersaturations. The proposed calculation algorithm of κ with the f(RH) measurements is demonstrated to be reasonable and can be widely applied.
  • Item
    On microphysical processes of noctilucent clouds (NLC): Observations and modeling of mean and width of the particle size-distribution
    (Göttingen : Copernicus, 2010) Baumgarten, G.; Fiedler, J.; Rapp, M.
    Noctilucent clouds (NLC) in the polar summer mesopause region have been observed in Norway (69° N, 16° E) between 1998 and 2009 by 3-color lidar technique. Assuming a mono-modal Gaussian size distribution we deduce mean and width of the particle sizes throughout the clouds. We observe a quasi linear relationship between distribution width and mean of the particle size at the top of the clouds and a deviation from this behavior for particle sizes larger than 40 nm, most often in the lower part of the layer. The vertically integrated particle properties show that 65% of the data follows the linear relationship with a slope of 0.42±0.02 for mean particle sizes up to 40 nm. For the vertically resolved particle properties (Δz = Combining double low line 0.15 km) the slope is comparable and about 0.39±0.03. For particles larger than 40 nm the distribution width becomes nearly independent of particle size and even decreases in the lower part of the layer. We compare our observations to microphysical modeling of noctilucent clouds and find that the distribution width depends on turbulence, the time that turbulence can act (cloud age), and the sampling volume/time (atmospheric variability). The model results nicely reproduce the measurements and show that the observed slope can be explained by eddy diffusion profiles as observed from rocket measurements. © 2010 Author(s).
  • Item
    Multi-static spatial and angular studies of polar mesospheric summer echoes combining MAARSY and KAIRA
    (Göttingen : Copernicus GmbH, 2018) Chau, J.L.; McKay, D.; Vierinen, J.P.; La Hoz, C.; Ulich, T.; Lehtinen, M.; Latteck, R.
    Polar mesospheric summer echoes (PMSEs) have been long associated with noctilucent clouds (NLCs). For large ice particles sizes and relatively high ice densities, PMSEs at 3m Bragg wavelengths are known to be good tracers of the atmospheric wind dynamics and to be highly correlated with NLC occurrence. Combining the Middle Atmosphere ALOMAR Radar System (MAARSY) and the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA), i.e., monostatic and bistatic observations, we show for the first time direct evidence of limited-volume PMSE structures drifting more than 90 km almost unchanged. These structures are shown to have horizontal widths of 5-15 km and are separated by 20-60 km, consistent with structures due to atmospheric waves previously observed in NLCs from the ground and from space. Given the lower sensitivity of KAIRA, the observed features are attributed to echoes from regions with high Schmidt numbers that provide a large radar cross section. The bistatic geometry allows us to determine an upper value for the angular sensitivity of PMSEs at meter scales. We find no evidence for strong aspect sensitivity for PMSEs, which is consistent with recent observations using radar imaging approaches. Our results indicate that multi-static allsky interferometric radar observations of PMSEs could be a powerful tool for studying mesospheric wind fields within large geographic areas. © Author(s) 2018.
  • Item
    Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign
    (Göttingen : Copernicus, 2014) Hammer, E.; Gysel, M.; Roberts, G.C.; Elias, T.; Hofer, J.; Hoyle, C.R.; Bukowiecki, N.; Dupont, J.-C.; Burnet, F.; Baltensperger, U.; Weingartner, E.
    Fog-induced visibility reduction is responsible for a variety of hazards in the transport sector. Therefore there is a large demand for an improved understanding of fog formation and thus improved forecasts. Improved fog forecasts require a better understanding of the numerous complex mechanisms during the fog life cycle. During winter 2012/13 a field campaign called ParisFog aiming at fog research took place at SIRTA (Instrumented Site for Atmospheric Remote Sensing Research). SIRTA is located about 20 km southwest of the Paris city center, France, in a semi-urban environment. In situ activation properties of the prevailing fog were investigated by measuring (1) total and interstitial (non-activated) dry particle number size distributions behind two different inlet systems; (2) interstitial hydrated aerosol and fog droplet size distributions at ambient conditions; and (3) cloud condensation nuclei (CCN) number concentration at different supersaturations (SS) with a CCN counter. The aerosol particles were characterized regarding their hygroscopic properties, fog droplet activation behavior and contribution to light scattering for 17 developed fog events. Low particle hygroscopicity with an overall median of the hygroscopicity parameter, κ, of 0.14 was found, likely caused by substantial influence from local traffic and wood burning emissions. Measurements of the aerosol size distribution at ambient RH revealed that the critical wet diameter, above which the hydrated aerosols activate to fog droplets, is rather large (with a median value of 2.6μm) and is highly variable (ranging from 1 to 5μm) between the different fog events. Thus, the number of activated fog droplets was very small and the non-activated hydrated particles were found to contribute significantly to the observed light scattering and thus to the reduction in visibility. Combining all experimental data, the effective peak supersaturation, SSpeak, a measure of the peak supersaturation during the fog formation, was determined. The median SSpeak value was estimated to be in the range from 0.031 to 0.046% (upper and lower limit estimations), which is in good agreement with previous experimental and modeling studies of fog.
  • Item
    Variability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations
    (Amsterdam [u.a.] : Elsevier Science, 2018) Sun, J.; Birmili, W.; Hermann, M.; Tuch, T.; Weinhold, K.; Spindler, G.; Schladitz, A.; Bastian, S.; Löschau, G.; Cyrys, J.; Gu, J.; Flentje, H.; Briel, B.; Asbac, C.; Kaminski, H.; Ries, L.; Sohme, R.; Gerwig, H.; Wirtz, K.; Meinhardt, F.; Schwerin, A.; Bath, O.; Ma, N.; Wiedensohler, A.
    This work reports the first statistical analysis of multi-annual data on tropospheric aerosols from the German Ultrafine Aerosol Network (GUAN). Compared to other networks worldwide, GUAN with 17 measurement locations has the most sites equipped with particle number size distribution (PNSD) and equivalent black carbon (eBC) instruments and the most site categories in Germany ranging from city street/roadside to High Alpine. As we know, the variations of eBC and particle number concentration (PNC) are influenced by several factors such as source, transformation, transport and deposition. The dominant controlling factor for different pollutant parameters might be varied, leading to the different spatio-temporal variations among the measured parameters. Currently, a study of spatio-temporal variations of PNSD and eBC considering the influences of both site categories and spatial scale is still missing. Based on the multi-site dataset of GUAN, the goal of this study is to investigate how pollutant parameters may interfere with spatial characteristics and site categories. © 2019 The Authors
  • Item
    Do new sea spray aerosol source functions improve the results of a regional aerosol model?
    (Amsterdam [u.a.] : Elsevier Science, 2018) Barthel, Stefan; Tegen, Ina; Wolke, Ralf
    Sea spray aerosol particle is a dominating part of the global aerosol mass load of natural origin. Thus, it strongly influences the atmospheric radiation balance and cloud properties especially over the oceans. Uncertainties of the estimated climate impacts by this aerosol type are partly caused by the uncertainties in the particle size dependent emission fluxes of sea spray aerosol particle. We present simulations with a regional aerosol transport model system in two domains, for three months and compared the model results to measurements at four stations using various sea spray aerosol particle source source functions. Despite these limitations we found the results using different source functions are within the range of most model uncertainties. Especially the model's ability to produce realistic wind speeds is crucial. Furthermore, the model results are more affected by a function correcting the emission flux for the effect of the sea surface temperature than by the use of different source functions. © 2018 The Authors
  • Item
    Chemical composition of cloud water in the puerto rican tropical trade wind cumuli
    (Dordrecht : Springer, 2009) Gioda, A.; Mayol-Bracero, O.L.; Morales-García, F.; Collett, J.; Decesari, S.; Emblico, L.; Facchini, M.C.; Morales-De Jesús, R.J.; Mertes, S.; Borrmann, S.; Walter, S.; Schneider, J.
    As part of the Rain In Cumulus over the Ocean Experiment (RICO) and the Puerto Rico Aerosol and Cloud Study (PRACS), cloud water was collected at East Peak (EP) in Puerto Rico. The main objective of this study was to determine the concentrations of water-soluble species (Cl-, NO3 -, SO4 2-, NH4 +, Ca 2+, H+, Mg2+, K+, and Na +) in water samples taken from clouds influenced by tropical trade winds. The most abundant inorganic species were Na+ (average 465 μeq l-1) and Cl- (434 μeq l-1), followed by Mg2+ (105 μeq l-1), SO4 2- (61 μeq l-1), and NO3 - (25 μeq l -1). High concentrations of nss-SO4 2 (28 μeq l-1), NO3 - (86 μeq l-1), and H+ (14.5 μeq l-1) were measured with a shift in air masses origin from the North Atlantic to North American continent, which reflected a strong anthropogenic influence on cloud chemistry at EP. Long-range transport of particles and acid gases seems to be the factor responsible for fluctuations in concentrations and pH of cloud water at East Peak. When under trade wind influences the liquid phase concentrations of all inorganic substances were similar to those found in clouds in other clean maritime environments. © 2008 Springer Science+Business Media B.V.