Search Results

Now showing 1 - 10 of 13
  • Item
    Comparison of Multiscale Imaging Methods for Brain Research
    (Basel : MDPI, 2020) Tröger, Jessica; Hoischen, Christian; Perner, Birgit; Monajembashi, Shamci; Barbotin, Aurélien; Löschberger, Anna; Eggeling, Christian; Kessels, Michael M.; Qualmann, Britta; Hemmerich, Peter
    A major challenge in neuroscience is how to study structural alterations in the brain. Even small changes in synaptic composition could have severe outcomes for body functions. Many neuropathological diseases are attributable to disorganization of particular synaptic proteins. Yet, to detect and comprehensively describe and evaluate such often rather subtle deviations from the normal physiological status in a detailed and quantitative manner is very challenging. Here, we have compared side-by-side several commercially available light microscopes for their suitability in visualizing synaptic components in larger parts of the brain at low resolution, at extended resolution as well as at super-resolution. Microscopic technologies included stereo, widefield, deconvolution, confocal, and super-resolution set-ups. We also analyzed the impact of adaptive optics, a motorized objective correction collar and CUDA graphics card technology on imaging quality and acquisition speed. Our observations evaluate a basic set of techniques, which allow for multi-color brain imaging from centimeter to nanometer scales. The comparative multi-modal strategy we established can be used as a guide for researchers to select the most appropriate light microscopy method in addressing specific questions in brain research, and we also give insights into recent developments such as optical aberration corrections.
  • Item
    Eosinophils and Neutrophils-Molecular Differences Revealed by Spontaneous Raman, CARS and Fluorescence Microscopy
    (Basel : MDPI, 2020) Dorosz, Aleksandra; Grosicki, Marek; Dybas, Jakub; Matuszyk, Ewelina; Rodewald, Marko; Meyer, Tobias; Popp, Jürgen; Malek, Kamilla; Baranska, Malgorzata
    Leukocytes are a part of the immune system that plays an important role in the host's defense against viral, bacterial, and fungal infections. Among the human leukocytes, two granulocytes, neutrophils (Ne) and eosinophils (EOS) play an important role in the innate immune system. For that purpose, eosinophils and neutrophils contain specific granules containing protoporphyrin-type proteins such as eosinophil peroxidase (EPO) and myeloperoxidase (MPO), respectively, which contribute directly to their anti-infection activity. Since both proteins are structurally and functionally different, they could potentially be a marker of both cells' types. To prove this hypothesis, UV-Vis absorption spectroscopy and Raman imaging were applied to analyze EPO and MPO and their content in leukocytes isolated from the whole blood. Moreover, leukocytes can contain lipidic structures, called lipid bodies (LBs), which are linked to the regulation of immune responses and are considered to be a marker of cell inflammation. In this work, we showed how to determine the number of LBs in two types of granulocytes, EOS and Ne, using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy. Spectroscopic differences of EPO and MPO can be used to identify these cells in blood samples, while the detection of LBs can indicate the cell inflammation process.
  • Item
    Investigating light-induced processes in covalent dye-catalyst assemblies for hydrogen production
    (Basel : MDPI, 2020) Bold, Sebastian; Straistari, Tatiana; Muñoz-García, Ana B.; Pavone, Michele; Artero, Vincent; Chavarot-Kerlidou, Murielle; Dietzek, Benjamin
    The light-induced processes occurring in two dye-catalyst assemblies for light-driven hydrogen production were investigated by ultrafast transient absorption spectroscopy. These dyads consist of a push-pull organic dye based on a cyclopenta[1,2-b:5,4-b’]dithiophene (CPDT) bridge, covalently linked to two different H2-evolving cobalt catalysts. Whatever the nature of the latter, photoinduced intramolecular electron transfer from the excited state of the dye to the catalytic center was never observed. Instead, and in sharp contrast to the reference dye, a fast intersystem crossing (ISC) populates a long-lived triplet excited state, which in turn non-radiatively decays to the ground state. This study thus shows how the interplay of different structures in a dye-catalyst assembly can lead to unexpected excited state behavior and might open up new possibilities in the area of organic triplet sensitizers. More importantly, a reductive quenching mechanism with an external electron donor must be considered to drive hydrogen production with these dye-catalyst assemblies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Influence of Surface Ligands on Charge-Carrier Trapping and Relaxation in Water-Soluble CdSe@CdS Nanorods
    (Basel : MDPI, 2020) Micheel, Mathias; Liu, Bei; Wächtler, Maria
    In this study, the impact of the type of ligand at the surface of colloidal CdSe@CdS dotin-rod nanostructures on the basic exciton relaxation and charge localization processes is closely examined. These systems have been introduced into the field of artificial photosynthesis as potent photosensitizers in assemblies for light driven hydrogen generation. Following photoinduced exciton generation, electrons can be transferred to catalytic reaction centers while holes localize into the CdSe seed, which can prevent charge recombination and lead to the formation of longlived charge separation in assemblies containing catalytic reaction centers. These processes are in competition with trapping processes of charges at surface defect sites. The density and type of surface defects strongly depend on the type of ligand used. Here we report on a systematic steadystate and time-resolved spectroscopic investigation of the impact of the type of anchoring group (phosphine oxide, thiols, dithiols, amines) and the bulkiness of the ligand (alkyl chains vs. poly(ethylene glycol) (PEG)) to unravel trapping pathways and localization efficiencies. We show that the introduction of the widely used thiol ligands leads to an increase of hole traps at the surface compared to trioctylphosphine oxide (TOPO) capped rods, which prevent hole localization in the CdSe core. On the other hand, steric restrictions, e.g., in dithiolates or with bulky side chains (PEG), decrease the surface coverage, and increase the density of electron trap states, impacting the recombination dynamics at the ns timescale. The amines in poly(ethylene imine) (PEI) on the other hand can saturate and remove surface traps to a wide extent. Implications for catalysis are discussed. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    FLIm and raman spectroscopy for investigating biochemical changes of bovine pericardium upon genipin cross-linking
    (Basel : MDPI, 2020) Shaik, Tanveer Ahmed; Alfonso-Garcia, Alba; Richter, Martin; Korinth, Florian; Krafft, Christoph; Marcu, Laura; Popp, Jürgen
    Biomaterials used in tissue engineering and regenerative medicine applications benefit from longitudinal monitoring in a non-destructive manner. Label-free imaging based on fluorescence lifetime imaging (FLIm) and Raman spectroscopy were used to monitor the degree of genipin (GE) cross-linking of antigen-removed bovine pericardium (ARBP) at three incubation time points (0.5, 1.0, and 2.5 h). Fluorescence lifetime decreased and the emission spectrum redshifted compared to that of uncross-linked ARBP. The Raman signature of GE-ARBP was resonance-enhanced due to the GE cross-linker that generated new Raman bands at 1165, 1326, 1350, 1380, 1402, 1470, 1506, 1535, 1574, 1630, 1728, and 1741 cm-1. These were validated through density functional theory calculations as cross-linker-specific bands. A multivariate multiple regression model was developed to enhance the biochemical specificity of FLIm parameters fluorescence intensity ratio (R2 = 0.92) and lifetime (R2 = 0.94)) with Raman spectral results. FLIm and Raman spectroscopy detected biochemical changes occurring in the collagenous tissue during the cross-linking process that were characterized by the formation of a blue pigment which affected the tissue fluorescence and scattering properties. In conclusion, FLIm parameters and Raman spectroscopy were used to monitor the degree of cross-linking non-destructively. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Rapid Raman spectroscopic analysis of stress induced degradation of the pharmaceutical drug tetracycline
    (Basel : MDPI, 2020) Domes, Christian; Frosch, Timea; Popp, Juergen; Frosch, Torsten
    Stress factors caused by inadequate storage can induce the unwanted degradation of active compounds in pharmaceutical formulations. Resonance Raman spectroscopy is presented as an analytical tool for rapid monitoring of small concentration changes of tetracycline and the metabolite 4-epianhydrotetracycline. These degradation processes were experimentally induced by changes in temperature, humidity, and irradiation with visible light over a time period of up to 23 days. The excitation wavelength ?exc = 413 nm was proven to provide short acquisition times for the simultaneous Raman spectroscopic detection of the degradation of tetracycline and production of its impurity in small sample volumes. Small concentration changes could be detected (down to 1.4% for tetracycline and 0.3% for 4-epianhydrotetracycline), which shows the potential of resonance Raman spectroscopy for analyzing the decomposition of pharmaceutical products. © 2020 by the authors.
  • Item
    WE-ASCA: The Weighted-Effect ASCA for Analyzing Unbalanced Multifactorial Designs-A Raman Spectra-Based Example
    (Basel : MDPI, 2021) Ali, Nairveen; Jansen, Jeroen; van den Doel, André; Tinnevelt, Gerjen Herman; Bocklitz, Thomas
    Analyses of multifactorial experimental designs are used as an explorative technique describing hypothesized multifactorial effects based on their variation. The procedure of analyzing multifactorial designs is well established for univariate data, and it is known as analysis of variance (ANOVA) tests, whereas only a few methods have been developed for multivariate data. In this work, we present the weighted-effect ASCA, named WE-ASCA, as an enhanced version of ANOVA-simultaneous component analysis (ASCA) to deal with multivariate data in unbalanced multifactorial designs. The core of our work is to use general linear models (GLMs) in decomposing the response matrix into a design matrix and a parameter matrix, while the main improvement in WE-ASCA is to implement the weighted-effect (WE) coding in the design matrix. This WE-coding introduces a unique solution to solve GLMs and satisfies a constrain in which the sum of all level effects of a categorical variable equal to zero. To assess the WE-ASCA performance, two applications were demonstrated using a biomedical Raman spectral data set consisting of mice colorectal tissue. The results revealed that WE-ASCA is ideally suitable for analyzing unbalanced designs. Furthermore, if WE-ASCA is applied as a preprocessing tool, the classification performance and its reproducibility can significantly improve.
  • Item
    Microfluidic chamber design for controlled droplet expansion and coalescence
    (Basel : MDPI, 2020) Kielpinski, Mark; Walther, Oliver; Cao, Jialan; Henkel, Thomas; Köhler, J. Michael; Groß, G. Alexander
    The defined formation and expansion of droplets are essential operations for droplet-based screening assays. The volumetric expansion of droplets causes a dilution of the ingredients. Dilution is required for the generation of concentration graduation which is mandatory for many different assay protocols. Here, we describe the design of a microfluidic operation unit based on a bypassed chamber and its operation modes. The different operation modes enable the defined formation of sub-L droplets on the one hand and the expansion of low nL to sub-L droplets by controlled coalescence on the other. In this way the chamber acts as fluidic interface between two fluidic network parts dimensioned for different droplet volumes. Hence, channel confined droplets of about 30-40 nL from the first network part were expanded to cannel confined droplets of about 500 to about 2500 nL in the second network part. Four different operation modes were realized: (a) flow rate independent droplet formation in a self-controlled way caused by the bypassed chamber design, (b) single droplet expansion mode, (c) multiple droplet expansion mode, and (d) multiple droplet coalescence mode. The last mode was used for the automated coalescence of 12 droplets of about 40 nL volume to produce a highly ordered output sequence with individual droplet volumes of about 500 nL volume. The experimental investigation confirmed a high tolerance of the developed chamber against the variation of key parameters of the dispersed-phase like salt content, pH value and fluid viscosity. The presented fluidic chamber provides a solution for the problem of bridging different droplet volumes in a fluidic network. © 2020 by the authors.
  • Item
    Biocompatible magnetic fluids of co-doped iron oxide nanoparticles with tunable magnetic properties
    (Basel : MDPI, 2020) Dutz, Silvio; Buske, Norbert; Landers, Joachim; Gräfe, Christine; Wende, Heiko; Clement, Joachim H.
    Magnetite (Fe3O4) particles with a diameter around 10 nm have a very low coercivity (Hc) and relative remnant magnetization (Mr/Ms), which is unfavorable for magnetic fluid hyperthermia. In contrast, cobalt ferrite (CoFe2O4) particles of the same size have a very high Hc and Mr/Ms, which is magnetically too hard to obtain suitable specific heating power (SHP) in hyperthermia. For the optimization of the magnetic properties, the Fe2+ ions of magnetite were substituted by Co2+ step by step, which results in a Co doped iron oxide inverse spinel with an adjustable Fe2+ substitution degree in the full range of pure iron oxide up to pure cobalt ferrite. The obtained magnetic nanoparticles were characterized regarding their structural and magnetic properties as well as their cell toxicity. The pure iron oxide particles showed an average size of 8 nm, which increased up to 12 nm for the cobalt ferrite. For ferrofluids containing the prepared particles, only a limited dependence of Hc and Mr/Ms on the Co content in the particles was found, which confirms a stable dispersion of the particles within the ferrofluid. For dry particles, a strong correlation between the Co content and the resulting Hc and Mr/Ms was detected. For small substitution degrees, only a slight increase in Hc was found for the increasing Co content, whereas for a substitution of more than 10% of the Fe atoms by Co, a strong linear increase in Hc and Mr/Ms was obtained. Mössbauer spectroscopy revealed predominantly Fe3+ in all samples, while also verifying an ordered magnetic structure with a low to moderate surface spin canting. Relative spectral areas of Mössbauer subspectra indicated a mainly random distribution of Co2+ ions rather than the more pronounced octahedral site-preference of bulk CoFe2O4. Cell vitality studies confirmed no increased toxicity of the Co-doped iron oxide nanoparticles compared to the pure iron oxide ones. Magnetic heating performance was confirmed to be a function of coercivity as well. The here presented non-toxic magnetic nanoparticle system enables the tuning of the magnetic properties of the particles without a remarkable change in particles size. The found heating performance is suitable for magnetic hyperthermia application. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Characterization of Staphylococci and Streptococci Isolated from Milk of Bovides with Mastitis in Egypt
    (Basel : MDPI, 2020) Ahmed, Wedad; Neubauer, Heinrich; Tomaso, Herbert; El Hofy, Fatma Ibrahim; Monecke, Stefan; Abdeltawab, Ashraf Awad; Hotzel, Helmut
    The aim of this study was to characterize staphylococci and streptococci in milk from Egyptian bovides. In total, 50 milk samples were collected from localities in the Nile Delta region of Egypt. Isolates were cultivated, identified using matrix-assisted laser desorption/ionization time-offlight mass spectrometry (MALDI-TOF MS), and antibiotic susceptibility testing was performed by the broth microdilution method. PCR amplifications were carried out, targeting resistanceassociated genes. Thirty-eight Staphylococcus isolates and six Streptococcus isolates could be cultivated. Staphylococcus aureus isolates revealed a high resistance rate to penicillin, ampicillin, clindamycin, and erythromycin. The mecA gene defining methicillin-resistant Staphylococcus aureus, erm(C) and aac-aphD genes was found in 87.5% of each. Coagulase-negative staphylococci showed a high prevalence of mecA, blaZ and tetK genes. Other resistance-associated genes were found. All Streptococcus dysgalactiae isolates carried blaZ, erm(A), erm(B), erm(C) and lnuA genes, while Streptococcus suis harbored erm(C), aphA-3, tetL and tetM genes, additionally. In Streptococcus gallolyticus, most of these genes were found. The Streptococcus agalactiae isolate harbored blaZ, erm(B), erm(C), lnuA, tetK, tetL and tetM genes. Streptococcus agalactiae isolate was analyzed by DNA microarray analysis. It was determined as sequence type 14, belonging to clonal complex 19 and represented capsule type VI. Pilus and cell wall protein genes, pavA, cadD and emrB/qacA genes were identified by microarray analysis. © 2020 by the authors.