Search Results

Now showing 1 - 10 of 68
  • Item
    The influence of aggregation and statistical post‐processing on the subseasonal predictability of European temperatures
    (Weinheim [u.a.] : Wiley, 2020) Straaten, Chiem; Whan, Kirien; Coumou, Dim; Hurk, Bart; Schmeits, Maurice
    The succession of European surface weather patterns has limited predictability because disturbances quickly transfer to the large-scale flow. Some aggregated statistics, however, such as the average temperature exceeding a threshold, can have extended predictability when adequate spatial scales, temporal scales and thresholds are chosen. This study benchmarks how the forecast skill horizon of probabilistic 2-m temperature forecasts from the subseasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF) evolves with varying scales and thresholds. We apply temporal aggregation by rolling-window averaging and spatial aggregation by hierarchical clustering. We verify 20 years of re-forecasts against the E-OBS dataset and find that European predictability extends at maximum into the fourth week. Simple aggregation and standard statistical post-processing extend the forecast skill horizon with two and three skilful days on average, respectively. The intuitive notion that higher levels of aggregation capture large-scale and low-frequency variability and can therefore tap into extended predictability holds in many cases. However, we show that the effect can be saturated and that there exist regional optimums beyond which extra aggregation reduces the forecast skill horizon. We expect such windows of predictability to result from specific physical mechanisms that only modulate and extend predictability locally. To optimize subseasonal forecasts for Europe, aggregation should thus be limited in certain cases.
  • Item
    Towards a more consistent eco-hydrological modelling through multi-objective calibration: a case study in the Andean Vilcanota River basin, Peru
    (Wallingford : IAHS Press, 2021) Fernandez-Palomino, Carlos Antonio; Hattermann, Fred F.; Krysanova, Valentina; Vega-Jácome, Fiorella; Bronstert, Axel
    Most hydrological studies rely on a model calibrated using discharge alone. However, judging the model reliability based on such calibration is problematic, as it does not guarantee the correct representation of internal hydrological processes. This study aims (a) to develop a comprehensive multi-objective calibration framework using remote sensing vegetation data and hydrological signatures (flow duration curve–FDC, and baseflow index) in addition to discharge, and (b) to apply this framework for calibration of the Soil and Water Assessment Tool (SWAT) in a typical Andean catchment. Overall, our calibration approach outperformed traditional discharge-based and FDC signature-based calibration strategies in terms of vegetation, streamflow, and flow partitioning simulation. New hydrological insights for the region are the following: baseflow is the main component of the streamflow sustaining the long dry-season flow, and pasture areas offer higher water yield and baseflow than other land-cover types. The proposed approach could be used in other data-scarce regions with complex topography. © 2020 IAHS.
  • Item
    Potential for Early Forecast of Moroccan Wheat Yields Based on Climatic Drivers
    (Hoboken, NJ [u.a.] : Wiley, 2020) Lehmann, J.; Kretschmer, M.; Schauberger, B.; Wechsung, F.
    Wheat production plays an important role in Morocco. Current wheat forecast systems use weather and vegetation data during the crop growing phase, thus limiting the earliest possible release date to early spring. However, Morocco's wheat production is mostly rainfed and thus strongly tied to fluctuations in rainfall, which in turn depend on slowly evolving climate dynamics. This offers a source of predictability at longer time scales. Using physically guided causal discovery algorithms, we extract climate precursors for wheat yield variability from gridded fields of geopotential height and sea surface temperatures which show potential for accurate yield forecasts already in December, with around 50% explained variance in an out-of-sample cross validation. The detected interactions are physically meaningful and consistent with documented ocean-atmosphere feedbacks. Reliable yield forecasts at such long lead times could provide farmers and policy makers with necessary information for early action and strategic adaptation measurements to support food security. ©2020. The Authors.
  • Item
    Integrating Life Cycle and Impact Assessments to Map Food's Cumulative Environmental Footprint
    (Amsterdam : Elsevier, 2020) Kuempel, Caitlin D.; Frazier, Melanie; Nash, Kirsty L.; Jacobsen, Nis Sand; Williams, David R.; Blanchard, Julia L.; Cottrell, Richard S.; McIntyre, Peter B.; Moran, Daniel; Bouwman, Lex; Froehlich, Halley E.; Gephart, Jessica A.; Metian, Marc; Többen, Johannes; Halpern, Benjamin S.
    Producing food exerts pressures on the environment. Understanding the location and magnitude of food production is key to reducing the impacts of these pressures on nature and people. In this Perspective, Kuempel et al. outline an approach for integrating life cycle assessment and cumulative impact mapping data and methodologies to map the cumulative environmental pressure of food systems. The approach enables quantification of current and potential future environmental pressures, which are needed to reduce the net impact of feeding humanity. © 2020 The AuthorsFeeding a growing, increasingly affluent population while limiting environmental pressures of food production is a central challenge for society. Understanding the location and magnitude of food production is key to addressing this challenge because pressures vary substantially across food production types. Applying data and models from life cycle assessment with the methodologies for mapping cumulative environmental impacts of human activities (hereafter cumulative impact mapping) provides a powerful approach to spatially map the cumulative environmental pressure of food production in a way that is consistent and comprehensive across food types. However, these methodologies have yet to be combined. By synthesizing life cycle assessment and cumulative impact mapping methodologies, we provide guidance for comprehensively and cumulatively mapping the environmental pressures (e.g., greenhouse gas emissions, spatial occupancy, and freshwater use) associated with food production systems. This spatial approach enables quantification of current and potential future environmental pressures, which is needed for decision makers to create more sustainable food policies and practices. © 2020 The Authors
  • Item
    Multimodel Evaluation of Nitrous Oxide Emissions From an Intensively Managed Grassland
    (Hoboken, NJ : Wiley, 2020) Fuchs, Kathrin; Merbold, Lutz; Buchmann, Nina; Bretscher, Daniel; Brilli, Lorenzo; Fitton, Nuala; Topp, Cairistiona F.E.; Klumpp, Katja; Lieffering, Mark; Martin, Raphaël; Newton, Paul C.D.; Rees, Robert M.; Rolinski, Susanne; Smith, Pete; Snow, Val
    Process-based models are useful for assessing the impact of changing management practices and climate on yields and greenhouse gas (GHG) emissions from agricultural systems such as grasslands. They can be used to construct national GHG inventories using a Tier 3 approach. However, accurate simulations of nitrous oxide (N2O) fluxes remain challenging. Models are limited by our understanding of soil-plant-microbe interactions and the impact of uncertainty in measured input parameters on simulated outputs. To improve model performance, thorough evaluations against in situ measurements are needed. Experimental data of N2O emissions under two management practices (control with typical fertilization versus increased clover and no fertilization) were acquired in a Swiss field experiment. We conducted a multimodel evaluation with three commonly used biogeochemical models (DayCent in two variants, PaSim, APSIM in two variants) comparing four years of data. DayCent was the most accurate model for simulating N2O fluxes on annual timescales, while APSIM was most accurate for daily N2O fluxes. The multimodel ensemble average reduced the error in estimated annual fluxes by 41% compared to an estimate using the Intergovernmental Panel on Climate Change (IPCC)-derived method for the Swiss agricultural GHG inventory (IPCC-Swiss), but individual models were not systematically more accurate than IPCC-Swiss. The model ensemble overestimated the N2O mitigation effect of the clover-based treatment (measured: 39–45%; ensemble: 52–57%) but was more accurate than IPCC-Swiss (IPCC-Swiss: 72–81%). These results suggest that multimodel ensembles are valuable for estimating the impact of climate and management on N2O emissions. ©2019. The Authors.
  • Item
    Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP)
    (Cambridge : Cambridge University Press, 2020) Sun, Sainan; Pattyn, Frank; Simon, Erika G.; Albrecht, Torsten; Cornford, Stephen; Calov, Reinhard; Dumas, Christophe; Gillet-Chaulet, Fabien; Goelzer, Goelzer; Golledge, Nicholas R.; Greve, Ralf; Hoffman, Matthew J.; Humbert, Angelika; Kazmierczak, Elise; Kleiner, Thomas; Leguy, Gunter R.; Lipscomb, William H.; Martin, Daniel; Morlighem, Mathieu; Nowicki, Sophie; Pollard, David; Price, Stephen; Quiquet, Aurélien; Seroussi, Hélène; Schlemm, Tanja; Sutter, Johannes; van de Wal, Roderik S.W.; Winkelmann, Ricarda; Zhang, Tong
    Antarctica's ice shelves modulate the grounded ice flow, and weakening of ice shelves due to climate forcing will decrease their 'buttressing' effect, causing a response in the grounded ice. While the processes governing ice-shelf weakening are complex, uncertainties in the response of the grounded ice sheet are also difficult to assess. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) compares ice-sheet model responses to decrease in buttressing by investigating the 'end-member' scenario of total and sustained loss of ice shelves. Although unrealistic, this scenario enables gauging the sensitivity of an ensemble of 15 ice-sheet models to a total loss of buttressing, hence exhibiting the full potential of marine ice-sheet instability. All models predict that this scenario leads to multi-metre (1-12 m) sea-level rise over 500 years from present day. West Antarctic ice sheet collapse alone leads to a 1.91-5.08 m sea-level rise due to the marine ice-sheet instability. Mass loss rates are a strong function of the sliding/friction law, with plastic laws cause a further destabilization of the Aurora and Wilkes Subglacial Basins, East Antarctica. Improvements to marine ice-sheet models have greatly reduced variability between modelled ice-sheet responses to extreme ice-shelf loss, e.g. compared to the SeaRISE assessments. Copyright © The Author(s) 2020.
  • Item
    Disentangling nonlinear geomagnetic variability during magnetic storms and quiescence by timescale dependent recurrence properties
    (Les Ulis : EDP Sciences, 2020) Alberti, Tommaso; Lekscha, Jaqueline; Consolini, Giuseppe; De Michelis, Paola; Donner, Reik V.
    Understanding the complex behavior of the near-Earth electromagnetic environment is one of the main challenges of Space Weather studies. This includes both the correct characterization of the different physical mechanisms responsible for its configuration and dynamics as well as the efforts which are needed for a correct forecasting of several phenomena. By using a nonlinear multi-scale dynamical systems approach, we provide here new insights into the scale-to-scale dynamical behavior of both quiet and disturbed periods of geomagnetic activity. The results show that a scale-dependent dynamical transition occurs when moving from short to long timescales, i.e., from fast to slow dynamical processes, the latter being characterized by a more regular behavior, while more dynamical anomalies are found in the behavior of the fast component. This suggests that different physical processes are typical for both dynamical regimes: the fast component, being characterized by a more chaotic and less predictable behavior, can be related to the internal dynamical state of the near-Earth electromagnetic environment, while the slow component seems to be less chaotic and associated with the directly driven processes related to the interplanetary medium variability. Moreover, a clear difference has been found between quiet and disturbed periods, the former being more complex than the latter. These findings support the view that, for a correct forecasting in the framework of Space Weather studies, more attention needs to be devoted to the identification of proxies describing the internal dynamical state of the near-Earth electromagnetic environment. © T. Alberti et al., Published by EDP Sciences 2020.
  • Item
    Integrated Climate-Change Assessment Scenarios and Carbon Dioxide Removal
    (Amsterdam : Elsevier, 2020) Schweizer, Vanessa J.; Ebi, Kristie L.; van Vuuren, Detlef P.; Jacoby, Henry D.; Riahi, Keywan; Strefler, Jessica; Takahashi, Kiyoshi; van Ruijven, Bas J.; Weyant, John P.
    To halt climate change, we must reduce anthropogenic CO2 emissions to net zero. Any emission sources must be balanced by natural or technological carbon sinks that facilitate CO2 removal (CDR) from the atmosphere. The integrated scenario framework represents how socio-economic trends and social values interact with biophysical systems in exploring future climate change and decarbonization pathways. This primer introduces the integrated scenario framework and its application to explore options for offsetting emissions with CDR. © 2020 The AuthorsTo halt climate change this century, we must reduce carbon dioxide (CO2) emissions from human activities to net zero. Any emission sources, such as in the energy or land-use sectors, must be balanced by natural or technological carbon sinks that facilitate CO2 removal (CDR) from the atmosphere. Projections of demand for large-scale CDR are based on an integrated scenario framework for emission scenarios composed of emission profiles as well as alternative socio-economic development trends and social values consistent with them. The framework, however, was developed years before systematic reviews of CDR entered the literature. This primer provides an overview of the purposes of scenarios in climate-change research and how they are used. It also introduces the integrated scenario framework and why it came about. CDR studies using the scenario framework, as well as its limitations, are discussed. Possible future developments for the scenario framework are highlighted, especially in relation to CDR. © 2020 The Authors
  • Item
    September 2019 Antarctic Sudden Stratospheric Warming: Quasi-6-Day Wave Burst and Ionospheric Effects
    (Hoboken, NJ [u.a.] : Wiley, 2020) Yamazaki, Y.; Matthias, V.; Miyoshi, Y.; Stolle, C.; Siddiqui, T.; Kervalishvili, G.; Laštovička, J.; Kozubek, M.; Ward, W.; Themens, D.R.; Kristoffersen, S.; Alken, P.
    An exceptionally strong stationary planetary wave with Zonal Wavenumber 1 led to a sudden stratospheric warming (SSW) in the Southern Hemisphere in September 2019. Ionospheric data from European Space Agency's Swarm satellite constellation mission show prominent 6-day variations in the dayside low-latitude region at this time, which can be attributed to forcing from the middle atmosphere by the Rossby normal mode “quasi-6-day wave” (Q6DW). Geopotential height measurements by the Microwave Limb Sounder aboard National Aeronautics and Space Administration's Aura satellite reveal a burst of global Q6DW activity in the mesosphere and lower thermosphere during the SSW, which is one of the strongest in the record. The Q6DW is apparently generated in the polar stratosphere at 30–40 km, where the atmosphere is unstable due to strong vertical wind shear connected with planetary wave breaking. These results suggest that an Antarctic SSW can lead to ionospheric variability through wave forcing from the middle atmosphere. ©2020. The Authors.
  • Item
    Vertical processes and resolution impact ice shelf basal melting: A multi-model study
    (Amsterdam [u.a.] : Elsevier Science, 2020) Gwyther, David E.; Kusahara, Kazuya; Asay-Davis, Xylar S.; Dinniman, Michael S.; Galton-Fenzi, Benjamin K.
    Understanding ice shelf–ocean interaction is fundamental to projecting the Antarctic ice sheet response to a warming climate. Numerical ice shelf–ocean models are a powerful tool for simulating this interaction, yet are limited by inherent model weaknesses and scarce observations, leading to parameterisations that are unverified and unvalidated below ice shelves. We explore how different models simulate ice shelf–ocean interaction using the 2nd Ice Shelf–Ocean Model Intercomparison Project (ISOMIP+) framework. Vertical discretisation and resolution of the ocean model are shown to have a significant effect on ice shelf basal melt rate, through differences in the distribution of meltwater fluxes and the calculation of thermal driving. Z-coordinate models, which generally have coarser vertical resolution in ice shelf cavities, may simulate higher melt rates compared to terrain-following coordinate models. This is due to the typically higher resolution of the ice–ocean boundary layer region in terrain following models, which allows better representation of a thin meltwater layer, increased stratification, and as a result, better insulation of the ice from water below. We show that a terrain-following model, a z-level coordinate model and a hybrid approach give similar results when the effective vertical resolution adjacent to the ice shelf base is similar, despite each model employing different paradigms for distributing meltwater fluxes and sampling tracers for melting. We provide a benchmark for thermodynamic ice shelf–ocean interaction with different model vertical coordinates and vertical resolutions, and suggest a framework for any future ice shelf–ocean thermodynamic parameterisations. © 2020 The Authors