Search Results

Now showing 1 - 4 of 4
  • Item
    Analysis of catalyst surface wetting: The early stage of epitaxial germanium nanowire growth
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2020) Ernst, Owen C.; Lange, Felix; Uebel, David; Teubner, Thomas; Boeck, Torsten
    The dewetting process is crucial for several applications in nanotechnology. Even though not all dewetting phenomena are fully understood yet, especially regarding metallic fluids, it is clear that the formation of nanometre-sized particles, droplets, and clusters as well as their movement are strongly linked to their wetting behaviour. For this reason, the thermodynamic stability of thin metal layers (0.1-100 nm) with respect to their free energy is examined here. The decisive factor for the theoretical considerations is the interfacial energy. In order to achieve a better understanding of the interfacial interactions, three different models for estimating the interfacial energy are presented here: (i) fully theoretical, (ii) empirical, and (iii) semi-empirical models. The formation of nanometre-sized gold particles on silicon and silicon oxide substrates is investigated in detail. In addition, the strengths and weaknesses of the three models are elucidated, the different substrates used are compared, and the possibility to further process the obtained particles as nanocatalysts is verified. The importance of a persistent thin communication wetting layer between the particles and its effects on particle size and number is also clarified here. In particular, the intrinsic reduction of the Laplace pressure of the system due to material re-evaporation and Ostwald ripening describes the theoretically predicted and experimentally obtained results. Thus, dewetting phenomena of thin metal layers can be used to manufacture nanostructured devices. From this point of view, the application of gold droplets as catalysts to grow germanium nanowires on different substrates is described. © 2020 Ernst et al.
  • Item
    Atomic layer deposition for efficient oxygen evolution reaction at Pt/Ir catalyst layers
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2020) Schlicht, Stefanie; Percin, Korcan; Kriescher, Stefanie; Hofer, André; Weidlich, Claudia; Wessling, Matthias; Bachmann, Julien
    We provide a direct comparison of two distinct methods of Ti felt surface treatment and Pt/Ir electrocatalyst deposition for the positive electrode of regenerative fuel cells and vanadium-air redox flow batteries. Each method is well documented in the literature, and this paper provides a direct comparison under identical experimental conditions of electrochemical measurements and in identical units. In the first method, based on classical engineering, the bimetallic catalyst is deposited by dip-coating in a precursor solution of the salts followed by their thermal decomposition. In the alternative method, more academic in nature, atomic layer deposition (ALD) is applied to the felts after anodization. ALD allows for a controlled coating with ultralow noble-metal loadings in narrow pores. In acidic electrolyte, the ALD approach yields improved mass activity (557 A·g-1 as compared to 80 A·g-1 at 0.39 V overpotential) on the basis of the noble-metal loading, as well as improved stability. © 2020 Schlicht et al.
  • Item
    Electrochemical nanostructuring of (111) oriented GaAs crystals: From porous structures to nanowires
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2020) Monaico, Elena I.; Monaico, Eduard V.; Ursaki, Veaceslav V.; Honnali, Shashank; Postolache, Vitalie; Leistner, Karin; Nielsch, Kornelius; Tiginyanu, Ion M.
    A comparative study of the anodization processes occurring at the GaAs(111)A and GaAs(111)B surfaces exposed to electrochemical etching in neutral NaCl and acidic HNO3 aqueous electrolytes is performed in galvanostatic and potentiostatic anodization modes. Anodization in NaCl electrolytes was found to result in the formation of porous structures with porosity controlled either by current under the galvanostatic anodization, or by the potential under the potentiostatic anodization. Possibilities to produce multilayer porous structures are demonstrated. At the same time, one-step anodization in a HNO3 electrolyte is shown to lead to the formation of GaAs triangular shape nanowires with high aspect ratio (400 nm in diameter and 100 μm in length). The new data are compared to those previously obtained through anodizing GaAs(100) wafers in alkaline KOH electrolyte. An IR photodetector based on the GaAs nanowires is demonstrated. © 2020 Monaico et al.
  • Item
    Electroluminescence and current-voltage measurements of single-(In,Ga)N/GaN-nanowire light-emitting diodes in a nanowire ensemble
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2019) van Treeck, David; Ledig, Johannes; Scholz, Gregor; Lähnemann, Jonas; Musolino, Mattia; Tahraoui, Abbes; Brandt, Oliver; Waag, Andreas; Riechert, Henning; Geelhaar, Lutz
    We present the combined analysis of electroluminescence (EL) and current-voltage (I-V) behavior of single, freestanding (In,Ga)N/GaN nanowire (NW) light-emitting diodes (LEDs) in an unprocessed, self-assembled ensemble grown by molecular beam epitaxy. The data were acquired in a scanning electron microscope equipped with a micromanipulator and a luminescence detection system. Single NW spectra consist of emission lines originating from different quantum wells, and the width of the spectra increases with decreasing peak emission energy. The corresponding I-V characteristics are described well by a modified Shockley equation. The key advantage of this measurement approach is the possibility to correlate the EL intensity of a single-NW LED with the actual current density in this NW. This way, the external quantum efficiency (EQE) can be investigated as a function of the current in a single-NW LED. The comparison of the EQE characteristic of single NWs and the ensemble device allows for a quite accurate determination of the actual number of emitting NWs in the working ensemble LED and the respective current densities in its individual NWs. This information is decisive for a meaningful and comprehensive characterization of a NW ensemble device, rendering the measurement approach employed here a very powerful analysis tool. © 2019 van Treeck et al.