Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

On the geometric stability of an inorganic nanowire and an organic ligand shell

2019, Bettscheider, Simon, Kraus, Tobias, Fleck, NormanA.

The break-up of a nanowire with an organic ligand shell into discrete droplets is analysed in terms of the Rayleigh-Plateau instability. Explicit account is taken of the effect of the organic ligand shell upon the energetics and kinetics of surface diffusion in the wire. Both an initial perturbation analysis and a full numerical analysis of the evolution in wire morphology are conducted, and the governing non-dimensional groups are identified. The perturbation analysis is remarkably accurate in obtaining the main features of the instability, including the pinch-off time and the resulting diameter of the droplets. It is conjectured that the surface energy of the wire and surrounding organic shell depends upon both the mean and deviatoric invariants of the curvature tensor. Such a behaviour allows for the possibility of a stable nanowire such that the Rayleigh-Plateau instability is not energetically favourable. A stability map illustrates this. Maps are also constructed for the final droplet size and pinch-off time as a function of two non-dimensional groups that characterise the energetics and kinetics of diffusion in the presence of the organic shell. These maps can guide future experimental activity on the stabilisation of nanowires by organic ligand shells. © 2018 The Authors

Loading...
Thumbnail Image
Item

Small-scale structures in noctilucent clouds observed by lidar

2020, Schäfer, Britta, Baumgarten, Gerd, Fiedler, Jens

Noctilucent clouds (NLC) are mesospheric ice clouds occurring in the summer hemisphere at high latitudes and an altitude of about 83km. This region is the coldest of the earth's atmosphere and is characterized by the presence of wave interaction and dissipation. The processes involved here lead to a variety of structures and instabilities that become visible in noctilucent clouds and are observed by different instruments. In this work high-resolution lidar measurements are used to give a wide overview of the structures at small scales below the Brunt–Väisälä period of ∼5min. For the first time a large amount of NLC profiles from lidar with a temporal resolution of 1s is analyzed in detail, covering about 1400h during the summer from 2011 to 2018. A new categorization focusing on small-scale structures is introduced, and occurrence statistics for these categories in the season of 2014 are performed. Both wave structures with periods below 10min and thin layers of <100m thickness are commonly found. When taking simultaneous wind measurements into account, we find that structures often are advected by the wind. © 2020 The Authors

Loading...
Thumbnail Image
Item

Breakdown of continuum models for spherical probe adhesion tests on micropatterned surfaces

2021, Bettscheider, Simon, Yu, Dan, Foster, Kimberly, McMeeking, Robert, Arzt, Eduard, Hensel, René, Booth, Jamie A.

The adhesion of fibrillar dry adhesives, mimicking nature's principles of contact splitting, is commonly characterized by using axisymmetric probes having either a flat punch or spherical geometry. When using spherical probes, the adhesive pull-off force measured depends strongly on the compressive preload applied when making contact and on the geometry of the probe. Together, these effects complicate comparisons of the adhesive performance of micropatterned surfaces measured in different experiments. In this work we explore these issues, extending previous theoretical treatments of this problem by considering a fully compliant backing layer with an array of discrete elastic fibrils on its surface. We compare the results of the semi-analytical model presented to existing continuum theories, particularly with respect to determining a measurement system- and procedure-independent metric for the local adhesive strength of the fibrils from the global pull-off force. It is found that the discrete nature of the interface plays a dominant role across a broad range of relevant system parameters. Accordingly, a convenient tool for simulation of a discrete array is provided. An experimental procedure is recommended for use in conjunction with this tool in order to extract a value for the local adhesive strength of the fibrils, which is independent of the other system properties (probe radius, backing layer thickness, and preload) and thus is suitable for comparison across experimental studies.

Loading...
Thumbnail Image
Item

Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices

2021, Arzt, Eduard, Quan, Haocheng, McMeeking, Robert M., Hensel, René

In the course of evolution nature has arrived at startling materials solutions to ensure survival. Investigations into biological surfaces, ranging from plants, insects and geckos to aquatic animals, have inspired the design of intricate surface patterns to create useful functionalities. This paper reviews the fundamental interaction mechanisms of such micropatterns with liquids, solids, and soft matter such as skin for control of wetting, self-cleaning, anti-fouling, adhesion, skin adherence, and sensing. Compared to conventional chemical strategies, the paradigm of micropatterning enables solutions with superior resource efficiency and sustainability. Associated applications range from water management and robotics to future health monitoring devices. We finally provide an overview of the relevant patterning methods as an appendix.

Loading...
Thumbnail Image
Item

The impact of atmospheric boundary layer, opening configuration and presence of animals on the ventilation of a cattle barn

2020, Nosek, Štěpán, Kluková, Zuzana, Jakubcová, Michaela, Yi, Qianying, Janke, David, Demeyer, Peter, Jaňour, Zbyněk

Naturally ventilated livestock buildings (NVLB) represent one of the most significant sources of ammonia emissions. However, even the dispersion of passive gas in an NVLB is still not well understood. In this paper, we present a detailed investigation of passive pollutant dispersion in a model of a cattle barn using the wind tunnel experiment method. We simulated the pollution of the barn by a ground-level planar source. We used the time-resolved particle image velocimetry (TR-PIV) and the fast flame ionisation detector (FFID) to study the flow and dispersion processes at high spatial and temporal resolution. We employed the Proper Orthogonal Decomposition (POD) and Oscillating Patterns Decomposition (OPD) methods to detect the coherent structures of the flow. The results show that the type of atmospheric boundary layer (ABL) and sidewall opening height have a significant impact on the pollutant dispersion in the barn, while the presence of animals and doors openings are insignificant under conditions of winds perpendicular to the sidewall openings. We found that the dynamic coherent structures, developed by the Kelvin-Helmholtz instability, contribute to the pollutant transport in the barn. We demonstrate that in any of the studied cases the pollutant was not well mixed within the barn and that a significant underestimation (up to by a factor 3) of the barn ventilation might be obtained using, e.g. tracer gas method. © 2020 The Authors