Search Results

Now showing 1 - 10 of 18
  • Item
    Synthesis and crystal structure of a one-dimensional chain-like strontium(II) coordination polymer built of N-methyldiethanolamine and isobutyrate ligands
    (Chester : International Union of Crystallography, 2021) Seiss, Maximilian; Schmitz, Sebastian; Börner, Martin; Monakhov, Kirill Yu.
    The one-dimensional coordination polymer (I) [Sr(ib)2 (H2mda)]n (Hib = isobutyric acid, C4H8O2, and H2mda = N-methyldiethanolamine, C5H13NO2), namely, catena-poly[[(N-methyldiethanolamine-k3O, N, O')strontium(II)]-di-μ2- isobutyrato-K3O, O':O;K3O:O, O'], was prepared by the one-pot aerobic reaction of [Zr6O4 (OH)4 (ib)12 (H2O)].3Hib with Sr(NO3)2 and H2mda in the presence of MnCl2 and Et3N in acetonitrile. The use of MnCl2 is key to the isolation of I as high-quality colorless crystals in good yield. The molecular solid-state structure of I was determined by single-crystal X-ray diffraction. Compound I crystallizes in the monoclinic space group P21/c and shows a one-dimensional polymeric chain structure. Each monomeric unit of this coordination polymer consists of a central SrII ion in the NO8 coordination environment of two deprotonated ib- ligands and one fully protonated H2mda ligand. The C and O atoms of the H2mda ligand were refined as disordered over two sets of sites with site occupancies of 0.619 (3) and 0.381 (3). Compound I shows thermal stability up to 130°C in air. © 2021 International Union of Crystallography. All rights reserved.
  • Item
    Defect-Induced Magnetism in Nonmagnetic Oxides: Basic Principles, Experimental Evidence, and Possible Devices with ZnO and TiO2
    (Weinheim : Wiley-VCH, 2020) Esquinazi, Pablo David; Hergert, Wolfram; Stiller, Markus; Botsch, Lukas; Ohldag, Hendrik; Spemann, Daniel; Hoffmann, Martin; Adeagbo, Waheed A.; Chassé, Angelika; Nayak, Sanjeev K.; Ben Hamed, Hichem
    The magnetic moment and the magnetic order induced by localized defects, like vacancies, interstitials, and/or nonmagnetic (NM) ions, in a NM oxide atomic lattice are discussed. When the defect concentration is of the order of or larger than ≈3 at%, magnetic order at room temperature can appear. Herein, the theoretical basic principles needed to understand and compute this new magnetic phenomenon in solids are developed in detail. In particular, the main results of density functional theory (DFT) calculations are used to estimate the magnetization and X-ray magnetic circular dichroism (XMCD) values. The main experimental evidences on this phenomenon are reviewed, especially magnetization, the element-specific XMCD, and transport properties in two selected oxides, ZnO and TiO2. Emphasis is given on the simplicity and efficiency ion irradiation methods have to trigger magnetic order in these oxides as well as a very sensitive method to characterize magnetic impurities. Two possible applications of this phenomenon are discussed, namely spin filtering at magnetic/NM interfaces in ZnO and perpendicular magnetic anisotropy triggered in TiO2 anatase microstructures. The existing literature on defect-induced magnetism in oxides is shortly reviewed, which provides further evidence on the robustness of this phenomenon in solids.
  • Item
    Molecular Beam Epitaxy Growth and Characterization of Germanium-Doped Cubic AlxGa1−xN
    (Weinheim : Wiley-VCH, 2020) Deppe, Michael; Henksmeier, Tobias; Gerlach, Jürgen W.; Reuter, Dirk; As, Donat J.
    In cubic (c-)GaN Ge has emerged as a promising alternative to Si for n-type doping, offering the advantage of slightly improved electrical properties. Herein, a study on Ge doping of the ternary alloy c-AlxGa1−xN is presented. Ge-doped c-AlxGa1−xN layers are grown by plasma-assisted molecular beam epitaxy. In two sample series, both the Al mole fraction x and the doping level are varied. The incorporation of Ge is verified by time-of-flight secondary ion mass spectrometry. Ge incorporation and donor concentrations rise exponentially with increasing Ge cell temperature. A maximum donor concentration of 1.4 × 1020 cm−3 is achieved. While the incorporation of Ge is almost independent of x, incorporation of O, which acts as an unintentional donor, increases for higher x. Dislocation densities start increasing when doping levels of around 3 × 1019 cm−3 are exceeded. Also photoluminescence intensities begin to drop at these high doping levels. Optical emission of layers with x > 0.25 is found to originate from a defect level 0.9 eV below the indirect bandgap, which is not related to Ge. In the investigated range 0 ≤ x ≤ 0.6, Ge is a suitable donor in c-AlxGa1−xN up to the low 1019 cm−3 range.
  • Item
    Development of a model for ultra-precise surface machining of N-BK7® using microwave-driven reactive plasma jet machining
    (Hoboken, NJ : Wiley Interscience, 2019) Kazemi, Faezeh; Boehm, Georg; Arnold, Thomas
    In this paper, extensive studies are conducted as key to overcoming several challenging limitations in applying fluorine-based reactive plasma jet machining (PJM) to surface machining of N-BK7®, particularly regarding the manufacture of freeform optical elements. The chemical composition and lateral distributions of the residual layer are evaluated by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive X-ray spectroscopy analysis aiming at clarifying the exact chemical kinetics between plasma generated active particles and the N-BK7 surface atoms. Subsequently, a model is developed by performing static etchings to consider the time-varying nonlinearity of the material removal rate and estimate the local etching rate function. Finally, the derived model is extended into the dynamic machining process, and the outcomes are compared with the experimental results.
  • Item
    An investigation on effectiveness of temperature treatment for fluorine-based reactive plasma jet machining of N-BK7®
    (Hoboken, NJ : Wiley Interscience, 2020) Kazemi, Faezeh; Boehm, Georg; Arnold, Thomas
    In this study, a fluorine-based reactive plasma jet is investigated as a promising tool for ultraprecise surface machining of N-BK7®. Plasma-generated particles react with an N-BK7 surface to create volatile and nonvolatile compounds. The desorption of volatile compounds results in an etched surface, whereas nonvolatile compounds form a residual layer in the etched area, causing unpredictable effects on the etching rate. Surface temperature treatment is proposed to improve the machining procedure with respect to deterministic material removal, leading to predictable results. It is shown that, at an elevated surface temperature, the residual layer properties are modified in favor of improved etching performance. The etching behavior of N-BK7 is compared with fused silica to verify the optimality of the obtained results.
  • Item
    Biaxially Textured Titanium Thin Films by Oblique Angle Deposition: Conditions and Growth Mechanisms
    (Weinheim : Wiley-VCH, 2020) Liedtke-Grüner, Susann; Grüner, Christoph; Lotnyk, Andriy; Gerlach, Juergen W.; Rauschenbach, Bernd
    Growing highly crystalline nanowires over large substrate areas remains an ambiguous task nowadays. Herein, a time-efficient and easy-to-handle bottom-up approach is demonstrated that enables the self-assembled growth of biaxially textured Ti thin films composed of single-crystalline nanowires in a single-deposition step. Ti thin films are deposited under highly oblique incidence angles by electron beam evaporation on amorphous substrates. Substrate temperature, angle of the incoming particle flux, and working pressure are varied to optimize the crystallinity in those films. Height-resolved structure information of individual nanowires is provided by a transmission electron microscopy (TEM) nanobeam, high-resolution TEM, and electron diffraction. Ti nanowires are polycrystalline at 77 K, whereas for ≥300 K, single-crystalline nanowires are tendentially found. The Ti crystals grow along the thermodynamically favored c-direction, but the nanowires’ tilt angle is determined by shadowing. Biaxially textured Ti thin films require a certain temperature range combined with highly oblique deposition angles, which is proved by X-ray in-plane pole figures. A general correlation between average activation energy for surface self-diffusion and melting point of metals is given to estimate the significant influence of surface self-diffusion on the evolution of obliquely deposited metal thin films.
  • Item
    A novel Deal–Grove-inspired model for fluorine-based plasma jet etching of borosilicate crown optical glass
    (Hoboken, NJ : Wiley Interscience, 2021) Kazemi, Faezeh; Boehm, Georg; Arnold, Thomas
    The Deal–Grove model is a state-of-the-art approach proposed for describing the thermal oxidation of silicon and the oxide thickness over time. In this study, the Deal–Grove concept provided the inspiration for a mathematical model for simulating plasma jet-based dry etching process of borosilicate crown glass (N-BK7®). The whole process is contained in two so-called Deal–Grove parameters, which are extracted from experimental data including local etching depth and surface temperature distribution. The proposed model is extended for the evolution of dynamic etch profiles, and the obtained results are validated experimentally. By establishing such a model, it is possible to predict the effect of the residual layer and surface temperature on the evolution of local etching depths over dwell time.
  • Item
    Insights into surface modification and erosion of multi-element arc cathodes using a novel multilayer cathode design
    (Melville, NY : American Inst. of Physics, 2020) Golizadeh, Mehran; Anders, André; Martin, Francisca Mendez; Kolozsvári, Szilard; Franz, Robert
    Nowadays, multi-element cathodes are frequently employed to grow multi-element thin films and coatings using cathodic arc deposition processes. During cathode erosion, the cathode spot sequentially ignites on the cathode surface and imposes melting-solidification cycles that lead to material intermixing and the formation of a modified layer on the cathode surface. To allow us to study these surface modifications, a 10 µm thick Mo/Al multilayer coating was sputter-deposited onto a standard Ti arc cathode. This cathode was eroded by a dc steered arc discharge for a short duration enabling the observation of single craters formed by type 1 and 2 cathode spots. Furthermore, separated clusters of overlapping craters and a fully eroded surface caused by different stages of erosion were differentiated when scanning the erosion track in the lateral direction. Cross sections of single craters were prepared by focused ion beam techniques while metallographic methods were applied to obtain cross sections of overlapping craters and the modified layer. The layers of the multilayer coating acted as trace markers providing new insights into the material intermixing within craters, the material displacements during crater formation, the plasma pressure acting on the craters, and the temperature gradient (heat-affected zone) below the craters. The observations are discussed within the framework of established arc crater formation models. © 2020 Author(s).
  • Item
    Influence of Ar gas pressure on ion energy and charge state distributions in pulsed cathodic arc plasmas from Nb-Al cathodes studied with high time resolution
    (Bristol : IOP Publ., 2019) Zöhrer, Siegfried; Anders, André; Franz, Robert
    For cathodic arcs, the cathode material is one of the most important determinants of plasma properties. Consequently, the cathode material - plasma relationship is of special interest in related fundamental research as well as in applications like the synthesis of thin films and coatings. In the latter, the use of multi-element cathodes in inert as well as reactive gas atmospheres is common practice. To further improve the physical understanding of cathodic arcs in such settings, we analyze ions in pulsed cathodic arc plasmas from Nb, Al and two composite Nb-Al cathodes with high time-resolution using a mass-energy-analyzer. The experiments were conducted in Ar atmosphere at total pressures of 0.04, 0.20 and 0.40 Pa, and are compared to earlier results in high vacuum at 10-4. In addition to examining the influence of Ar on ion properties and their cathode material dependence, the results are used to discuss physical concepts in cathodic arcs, like the gas-dynamic expansion of the cathode spot plasma, or the influence of charge exchange collisions of ions with neutrals. While such inelastic collisions e.g. with Ar atoms cause a reduction of charge states to mainly Al+ and Nb2+ at the highest pressure, Ar atoms also seem to take part in near-cathode processes. Ar ions in different time and energy regimes up to 150 eV were observed and compared to Nb and Al ions, showing overlapping velocity distributions for Nb, Al and Ar+ ions, but also Ar2+ ions faster than other ion species. © 2018 IOP Publishing Ltd.
  • Item
    Uncovering the (un-)occupied electronic structure of a buried hybrid interface
    (Bristol : IOP Publ., 2019) Vempati, S.; Deinert, J.-C.; Gierster, L.; Bogner, L.; Richter, C.; Mutz, N.; Blumstengel, S.; Zykov, A.; Kowarik, S.; Garmshausen, Y.; Hildebrandt, J.; Hecht, S.; Stahler, J.
    The energy level alignment at organic/inorganic (o/i) semiconductor interfaces is crucial for any light-emitting or -harvesting functionality. Essential is the access to both occupied and unoccupied electronic states directly at the interface, which is often deeply buried underneath thick organic films and challenging to characterize. We use several complementary experimental techniques to determine the electronic structure of p-quinquephenyl pyridine (5P-Py) adsorbed on ZnO(1 0 -1 0). The parent anchoring group, pyridine, significantly lowers the work function by up to 2.9 eV and causes an occupied in-gap state (IGS) directly below the Fermi level E F . Adsorption of upright-standing 5P-Py also leads to a strong work function reduction of up to 2.1 eV and to a similar IGS. The latter is then used as an initial state for the transient population of three normally unoccupied molecular levels through optical excitation and, due to its localization right at the o/i interface, provides interfacial sensitivity, even for thick 5P-Py films. We observe two final states above the vacuum level and one bound state at around 2 eV above E F , which we attribute to the 5P-Py LUMO. By the separate study of anchoring group and organic dye combined with the exploitation of the occupied IGS for selective interfacial photoexcitation, this work provides a new pathway for characterizing the electronic structure at buried o/i interfaces. © 2019 IOP Publishing Ltd.