Search Results

Now showing 1 - 10 of 34
Loading...
Thumbnail Image
Item

A Diverse View of Science to Catalyse Change

2020, Urbina-Blanco, César A., Jilani, Safia Z., Speight, Isaiah R., Bojdys, Michael J., Friščić, Tomislav, Stoddart, J. Fraser, Nelson, Toby L., Mack, James, Robinson, Renã A.S., Waddell, Emanuel A., Lutkenhaus, Jodie L., Godfrey, Murrell, Abboud, Martine I., Aderinto, Stephen O., Aderohunmu, Damilola, Bibič, Lučka, Borges, João, Dong, Vy M., Ferrins, Lori, Fung, Fun Man, John, Torsten, Lim, Felicia P.L., Masters, Sarah L., Mambwe, Dickson, Thordarson, Pall, Titirici, Maria-Magdalena, Tormet-González, Gabriela D., Unterlass, Miriam M., Wadle, Austin, Yam, Vivian W.-W., Yang, Ying-Wei

Valuing diversity leads to scientific excellence, the progress of science and most importantly, it is simply the right thing to do. We can value diversity not only in words, but also in actions. From the structure of DNA,1 to computer science,2 and space-station batteries,3 several key scientific discoveries that enhance our lives today, were made by marginalized scientists. These three scientists, Rosalind E. Franklin, Alan M. Turing and Olga D. González-Sanabria, did not conform to the cultural expectations of how scientists should look and behave. Unfortunately, marginalized scientists are often viewed as just a resource rather than the lifeblood that constitutes science itself. We need to embrace scientists from all walks of life and corners of the globe; this will also mean that nobody is excluded from tackling the life-threatening societal challenges that lie ahead. An awareness of science policy is essential to safeguarding our future. Science policy deals with creating the framework and codes of conduct that determine how science can best serve society.4-6 Discussions around science policy are often accompanied by anecdotes of “good” and “bad” practices regarding the merits of diversity and inclusion. Excellence and truth, which flow inexorably from diversity and inclusion, are the bedrocks upon which science should influence political and economic outcomes. A vital area of science policy is to support the professional development of marginalized scientists, an objective that must be acted upon by scientific leaders and communicators...

Loading...
Thumbnail Image
Item

Dinuclear lanthanide complexes supported by a hybrid salicylaldiminato/calix[4]arene-ligand: Synthesis, structure, and magnetic and luminescence properties of (HNEt3)[Ln2(HL)(L)] (Ln = SmIII, EuIII, GdIII, TbIII)

2019, Ullmann, Steve, Hahn, Peter, Blömer, Laura, Mehnert, Anne, Laube, Christian, Abel, Bernd, Kersting, Berthold

The synthesis, structures, and properties of a new calix[4]arene ligand with an appended salicylaldimine unit (H4L = 25-[2-((2-methylphenol)imino)ethoxy]-26,27,28-trihydroxy-calix[4]arene) and four lanthanide complexes (HNEt3)[Ln2(HL)(L)] (Ln = SmIII (4), EuIII (5), GdIII (6), and TbIII (7)) are reported. X-ray crystallographic analysis (for 4 and 6) reveals an isostructural series of dimeric complexes with a triply-bridged NO3Ln(μ-O)2(OH⋯O)LnO3N core and two seven coordinated lanthanide ions. According to UV-vis spectrometric titrations in MeCN and ESI-MS the dimeric nature is maintained in solution. The apparent stability constants range between logK = 5.8 and 6.3. The appended salicylaldimines sensitize EuIII and TbIII emission (λexc 311 nm) in the solid state or immersed in a polycarbonate glass at 77 K (for 5, 7) and at 295 K (for 7). © The Royal Society of Chemistry 2019.

Loading...
Thumbnail Image
Item

Davydov splitting and singlet fission in excitonically coupled pentacene dimers

2019, Basel, Bettina Sabine, Hetzer, Constantin, Zirzlmeier, Johannes, Thiel, Dominik, Guldi, Rebecca, Hampel, Frank, Kahnt, Axel, Clark, Timothy, Guldi, Dirk Michael, Tykwinski, Rik R.

Singlet fission (SF) allows two charges to be generated from the absorption of a single photon and is, therefore, potentially transformative toward improving solar energy conversion. Key to the present study of SF is the design of pentacene dimers featuring a xanthene linker that strictly places two pentacene chromophores in a rigid arrangement and, in turn, enforces efficient, intramolecular π-overlap that mimics interactions typically found in condensed state (e.g., solids, films, etc.). Inter-chromophore communication ensures Davydov splitting, which plays an unprecedented role toward achieving SF in pentacene dimers. Transient absorption measurements document that intramolecular SF evolves upon excitation into the lower Davydov bands to form a correlated triplet pair at cryogenic temperature. At room temperature, the two spin-correlated triplets, one per pentacene moiety within the dimers, are electronically coupled to an excimer state. The presented results are transferable to a broad range of acene morphologies including aggregates, crystals, and films. © 2019 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Interatomic and Intermolecular Coulombic Decay

2020, Jahnke, Till, Hergenhahn, Uwe, Winter, Bernd, Dörner, Reinhard, Frühling, Ulrike, Demekhin, Philipp V., Gokhberg, Kirill, Cederbaum, Lorenz S., Ehresmann, Arno, Knie, André, Dreuw, Andreas

Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later. Since then, a number of fundamental and applied aspects have been studied in this quickly growing field of research. This review provides an introduction to ICD and draws the connection to related energy transfer and ionization processes. The theoretical approaches for the description of ICD as well as the experimental techniques developed and employed for its investigation are described. The existing body of literature on experimental and theoretical studies of ICD processes in different atomic and molecular systems is reviewed. © 2020 American Chemical Society

Loading...
Thumbnail Image
Item

Coordination chemistry and photoswitching of dinuclear macrocyclic cadmium-, nickel-, and zinc complexes containing azobenzene carboxylato co-ligands

2019, Klose, Jennifer, Severin, Tobias, Hahn, Peter, Jeremies, Alexander, Bergmann, Jens, Fuhrmann, Daniel, Griebel, Jan, Abel, Bernd, Kersting, Berthold

The synthesis of mixed-ligand complexes of the type [M2L(μ-L')]+, where L represents a 24-membered macrocyclic hexaaza-dithiophenolate ligand, L' is an azobenzene carboxylate co-ligand, and M = Cd(II), Ni(II) or Zn(II), is reported. A series of new complexes were synthesized, namely [M2L(μ-L')]+ (L' = azo-H, M = Cd (1), Ni (2); L' = azo-OH, M = Zn (3), Ni (4); L' = azo-NMe2, M = Zn (5), Cd (6), Ni (7); L' = azo-CO2Me, M = Cd (8), Ni (9)), and characterized by elemental analysis, electro-spray ionization mass spectrometry (ESIMS), IR, UV–vis and NMR spectroscopy (for diamagnetic Zn and Cd complexes) and X-ray single crystal structure analysis. The crystal structures of 3' and 5–8 display an isostructural series of compounds with bridging azobenzene carboxylates in the trans form. The paramagnetic Ni complexes 2, 4 and 7 reveal a weak ferromagnetic exchange interaction with magnetic exchange coupling constant values between 21 and 23 cm−1 (H = −2JS1S2). Irradiation of 1 with λ = 365 nm reveals a photoisomerization of the co-ligand from the trans to the cis form. © 2019 Klose et al.

Loading...
Thumbnail Image
Item

Mixed-ligand lanthanide complexes supported by ditopic bis(imino-methyl)-phenol/calix[4]arene macrocycles: synthesis, structures, and luminescence properties of [Ln2(L2)(MeOH)2] (Ln = La, Eu, Tb, Yb)

2020, Ullmann, Steve, Hahn, Peter, Mini, Parvathy, Tuck, Kellie L., Kahnt, Axel, Abel, Bernd, Gutierrez Suburu, Matias E., Strassert, Cristian A., Kersting, Berthold

The lanthanide binding ability of a macrocyclic ligand H6L2 comprising two bis(iminomethyl)phenol and two calix[4]arene units has been studied. H6L2 is a ditopic ligand which provides dinuclear neutral complexes of composition [Ln2(L2)(MeOH)2] (Ln = La (1), Eu (2), Tb (3), and Yb (4)) in very good yield. X-ray crystal structure analyses for 2 and 3 show that (L2)6- accommodates two seven coordinated lanthanide ions in a distorted monocapped trigonal prismatic/octahedral coordination environment. UV-vis spectroscopic titrations performed with La3+, Eu3+, Tb3+ and Yb3+ ions in mixed MeOH/CH2Cl2 solution (I = 0.01 M NBu4PF6) reveal that a 2 : 1 (metal : ligand) stoichiometry is present in solution, with log K11 and K21 values ranging from 5.25 to 6.64. The ratio α = K11/K21 of the stepwise formation constants for the mononuclear (L2 + M = ML2, log K11) and the dinuclear complexes (ML2 + M = M2L2, log K21) was found to be invariably smaller than unity indicating that the binding of the first Ln3+ ion augments the binding of the second Ln3+ ion. The present complexes are less luminescent than other seven-coordinated Eu and Tb complexes, which can be traced to vibrational relaxation of excited EuIII and TbIII states by the coligated MeOH and H2O molecules and/or low-lying ligand-to-metal charge-transfer (LMCT) states. © 2020 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Effect of morphology on the photoelectrochemical activity of TiO2 self-organized nanotube arrays

2020, Ennaceri, Houda, Fischer, Kristina, Hanus, Kevin, Chemseddine, Abdelkrim, Prager, Andrea, Griebel, Jan, Kühnert, Mathias, Schulze, Agnes, Abel, Bernd

In the present work, highly ordered titanium dioxide (TiO2) nanotube anodes were grown using a rapid anodization process. The photoelectrochemical performances of these electrodes strongly depend on the anodization conditions. Parameters such as electrolyte composition, anodization potential and anodization time are shown to affect the geometrical parameters of TiO2 nanotubes. The optimal anodization parameters are determined by photocurrent measurements, linear sweep voltammetry and electrochemical impedance spectroscopy. The thickness of the tube wall and its homogeneity is shown to strongly depend on the anodization potential, and the formation mechanism is discussed. This study permits the optimization of the photocurrent density and contributes to further improvement of the photoelectrochemical water-splitting performance of TiO2 nanotube photoelectrodes. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Long-Living Holes in Grey Anatase TiO2 Enable Noble-Metal-Free and Sacrificial-Agent-Free Water Splitting

2020, Liu, Ning, Mohajernia, Shiva, Nguyen, Nhat Truong, Hejazi, Seyedsina, Plass, Fabian, Kahnt, Axel, Yokosawa, Tadahiro, Osvet, Andres, Spiecker, Erdmann, Guldi, Dirk M., Schmuki, Patrik

Titanium dioxide has been the benchmark semiconductor in photocatalysis for more than 40 years. Full water splitting, that is, decomposing water into H2 and O2 in stoichiometric amounts and with an acceptable activity, still remains a challenge, even when TiO2-based photocatalysts are used in combination with noble-metal co-catalysts. The bottleneck of anatase-type TiO2 remains the water oxidation, that is, the hole transfer reaction from pristine anatase to the aqueous environment. In this work, we report that “grey” (defect engineered) anatase can provide a drastically enhanced lifetime of photogenerated holes, which, in turn, enables an efficient oxidation reaction of water to peroxide via a two-electron pathway. As a result, a Ni@grey anatase TiO2 catalyst can be constructed with an impressive performance in terms of photocatalytic splitting of neutral water into H2 and a stoichiometric amount of H2O2 without the need of any noble metals or sacrificial agents. The finding of long hole lifetimes in grey anatase opens up a wide spectrum of further photocatalytic applications of this material. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Polyoxometalates as components of supramolecular assemblies

2019, Stuckart, Maria, Monakhov, Kirill Yu.

The non-covalent interaction of polyoxometalates (POMs) with inorganic- or organic-based moieties affords hybrid assemblies with specific physicochemical properties that are of high interest for both fundamental and applied studies, including the discovery of conceptually new compounds and unveiling the impact of their intra-supramolecular relationships on the fields of catalysis, molecular electronics, energy storage and medicine. This minireview summarises the recent advances in the synthetic strategies towards the formation of such non-covalent POM-loaded assemblies, shedding light on their key properties and the currently investigated applications. Four main emerging categories according to the nature of the conjugate are described: (i) POMs in metal-organic frameworks, (ii) POMs merged with cationic metal complexes, (iii) architectures generated with solely POM units and (iv) POMs assembled with organic molecular networks. © 2019 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Comparison of Photocatalytic Membrane Reactor Types for the Degradation of an Organic Molecule by TiO2-Coated PES Membrane

2020, Regmi, Chhabilal, Lotfi, Shabnam, Espíndola, Jonathan Cawettiere, Fischer, Kristina, Schulze, Agnes, Schäfer, Andrea Iris

Photocatalytic membrane reactors with different configurations (design, flow modes and light sources) have been widely applied for pollutant removal. A thorough understanding of the contribution of reactor design to performance is required to be able to compare photocatalytic materials. Reactors with different flow designs are implemented for process efficiency comparisons. Several figures-of-merit, namely adapted space-time yield (STY) and photocatalytic space-time yield (PSTY), specific energy consumption (SEC) and degradation rate constants, were used to assess the performance of batch, flow-along and flow-through reactors. A fair comparison of reactor performance, considering throughput together with energy efficiency and photocatalytic activity, was only possible with the modified PSTY. When comparing the three reactors at the example of methylene blue (MB) degradation under LED irradiation, flow-through proved to be the most efficient design. PSTY1/PSTY2 values were approximately 10 times higher than both the batch and flow-along processes. The highest activity of such a reactor is attributed to its unique flow design which allowed the reaction to take place not only on the outer surface of the membrane but also within its pores. The enhancement of the mass transfer when flowing in a narrow space (220 nm in flow-through) contributes to an additional MB removal. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.