Search Results

Now showing 1 - 5 of 5
  • Item
    Myxobacteria-Derived Outer Membrane Vesicles: Potential Applicability Against Intracellular Infections
    (Basel : MDPI, 2020) Goes, Adriely; Lapuhs, Philipp; Kuhn, Thomas; Schulz, Eilien; Richter, Robert; Panter, Fabian; Dahlem, Charlotte; Koch, Marcus; Garcia, Ronald; Kiemer, Alexandra K.; Müller, Rolf; Fuhrmann, Gregor
    In 2019, it was estimated that 2.5 million people die from lower tract respiratory infections annually. One of the main causes of these infections is Staphylococcus aureus, a bacterium that can invade and survive within mammalian cells. S. aureus intracellular infections are difficult to treat because several classes of antibiotics are unable to permeate through the cell wall and reach the pathogen. This condition increases the need for new therapeutic avenues, able to deliver antibiotics efficiently. In this work, we obtained outer membrane vesicles (OMVs) derived from the myxobacteria Cystobacter velatus strain Cbv34 and Cystobacter ferrugineus strain Cbfe23, that are naturally antimicrobial, to target intracellular infections, and investigated how they can affect the viability of epithelial and macrophage cell lines. We evaluated by cytometric bead array whether they induce the expression of proinflammatory cytokines in blood immune cells. Using confocal laser scanning microscopy and flow cytometry, we also investigated their interaction and uptake into mammalian cells. Finally, we studied the effect of OMVs on planktonic and intracellular S. aureus. We found that while Cbv34 OMVs were not cytotoxic to cells at any concentration tested, Cbfe23 OMVs affected the viability of macrophages, leading to a 50% decrease at a concentration of 125,000 OMVs/cell. We observed only little to moderate stimulation of release of TNF-alpha, IL-8, IL-6 and IL-1beta by both OMVs. Cbfe23 OMVs have better interaction with the cells than Cbv34 OMVs, being taken up faster by them, but both seem to remain mostly on the cell surface after 24 h of incubation. This, however, did not impair their bacteriostatic activity against intracellular S. aureus. In this study, we provide an important basis for implementing OMVs in the treatment of intracellular infections.
  • Item
    Phenotypic and Molecular Detection of Biofilm Formation in Staphylococcus aureus Isolated from Different Sources in Algeria
    (Basel : MDPI, 2020) Achek, Rachid; Hotzel, Helmut; Nabi, Ibrahim; Kechida, Souad; Mami, Djamila; Didouh, Nassima; Tomaso, Herbert; Neubauer, Heinrich; Ehricht, Ralf; Monecke, Stefan; El-Adawy, Hosny
    Staphylococcus aureus is an opportunistic bacterium causing a wide variety of diseases. Biofilm formation of Staphylococcus aureus is of primary public and animal health concern. The purposes of the present study were to investigate the ability of Staphylococcus aureus isolated from animals, humans, and food samples to form biofilms and to screen for the presence of biofilmassociated and regulatory genes. In total, 55 Staphylococcus aureus isolated from sheep mastitis cases (n = 28), humans (n = 19), and from food matrices (n = 8) were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The ability of Staphylococcus aureus for slime production and biofilm formation was determined quantitatively. A DNA microarray examination was performed to detect adhesion genes (icaACD and biofilmassociated protein gene (bap)), genes encoding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), regulatory genes (accessory gene regulator (agr) and staphylococcal accessory regulator (sarA)), and the staphylococcal cassette chromosome mec elements (SCCmec). Out of 55 Staphylococcus aureus isolates, 39 (71.0%) and 23 (41.8%) were producing slime and biofilm, respectively. All Staphylococcus aureus strains isolated from food showed biofilm formation ability. 52.6% of the Staphylococcus aureus strains isolated from sheep with mastitis, and 17.9% of isolates from humans, were able to form a biofilm. Microarray analysis typed the Staphylococcus aureus into 15 clonal complexes. Among all Staphylococcus aureus isolates, four of the human isolates (21.1%) harbored the mecA gene (SCCmec type IV) typed into 2 clonal complexes (CC22-MRSA-IV and CC80-MRSA-IV) and were considered as methicillin-resistant, while two of them were slime-producing. None of the isolates from sheep with mastitis harbored the cna gene which is associated with biofilm production. The fnbB gene was found in 100%, 60% and 40% of biofilm-producing Staphylococcus aureus isolated from food, humans, and sheep with mastitis, respectively. Three agr groups were present and agr group III was predominant with 43.6%, followed by agr group I (38.2%), and agr group II (18.2%). This study revealed the capacity of Staphylococcus aureus isolates to form biofilms and highlighted the genetic background displayed by Staphylococcus aureus isolates from different sources in Algeria. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    A novel multidrug-resistant PVL-negative CC1-MRSA-IV clone emerging in Ireland and Germany likely originated in South-Eastern Europe
    (Amsterdam [u.a.] : Elsevier Science, 2019) Earls, Megan R.; Shore, Anna C.; Brennan, Gráinne I.; Simbeck, Alexandra; Schneider-Brachert, Wulf; Vremerǎ, Teodora; Dorneanu, Olivia S.; Slickers, Peter; Ehricht, Ralf; Monecke, Stefan; Coleman, David C.
    This study investigated the recent emergence of multidrug-resistant Panton-Valentine leukocidin (PVL)-negative CC1-MRSA-IV in Ireland and Germany. Ten CC1-MSSA and 139 CC1-MRSA isolates recovered in Ireland between 2004 and 2017 were investigated. These were compared to 21 German CC1-MRSA, 10 Romanian CC1-MSSA, five Romanian CC1-MRSA and two UAE CC1-MRSA, which were selected from an extensive global database, based on similar DNA microarray profiles to the Irish isolates. All isolates subsequently underwent whole-genome sequencing, core-genome single nucleotide polymorphism (cgSNP) analysis and enhanced SCCmec subtyping. Two PVL-negative clades (A and B1) were identified among four main clades. Clade A included 20 German isolates, 119 Irish isolates, and all Romanian MRSA and MSSA isolates, the latter of which differed from clade A MRSA by 47–130 cgSNPs. Eighty-six Irish clade A isolates formed a tight subclade (A1) exhibiting 0–49 pairwise cgSNPs, 80 of which harboured a 46 kb conjugative plasmid carrying both ileS2, encoding high-level mupirocin resistance, and qacA, encoding chlorhexidine resistance. The resistance genes aadE, aphA3 and sat were detected in all clade A MRSA and the majority (8/10) of clade A MSSA isolates. None of the clade A isolates harboured any enterotoxin genes other than seh, which is universally present in CC1. Clade B1 included the remaining German isolate, 17 Irish isolates and the two UAE isolates, all of which corresponded to the Western Australia MRSA-1 (WA MRSA-1) clone based on genotypic characteristics. MRSA within clades A and B1 differed by 188 cgSNPs and clade-specific SCCmec characteristics were identified, indicating independent acquisition of the SCCmec element. This study demonstrated the existence of a European PVL-negative CC1-MRSA-IV clone that is distinctly different from the well-defined PVL-negative CC1-MRSA-IV clone, WA MRSA-1. Furthermore, cgSNP analysis revealed that this newly defined clone may have originated in South-Eastern Europe, before spreading to both Ireland and Germany. © 2019 The Authors
  • Item
    Discovery of hemocompatible bacterial biofilm-resistant copolymers
    (Amsterdam [u.a.] : Elsevier Science, 2020) Singh, Taranjit; Hook, Andrew L.; Luckett, Jeni; Maitz, Manfred F.; Sperling, Claudia; Werner, Carsten; Davies, Martyn C.; Irvine, Derek J.; Williams, Paul; Alexander, R.
    Blood-contacting medical devices play an important role within healthcare and are required to be biocompatible, hemocompatible and resistant to microbial colonization. Here we describe a high throughput screen for copolymers with these specific properties. A series of weakly amphiphilic monomers are combinatorially polymerized with acrylate glycol monomers of varying chain lengths to create a library of 645 multi-functional candidate materials containing multiple chemical moieties that impart anti-biofilm, hemo- and immuno-compatible properties. These materials are screened in over 15,000 individual biological assays, targeting two bacterial species, one Gram negative (Pseudomonas aeruginosa) and one Gram positive (Staphylococcus aureus) commonly associated with central venous catheter infections, using 5 different measures of hemocompatibility and 6 measures of immunocompatibililty. Selected copolymers reduce platelet activation, platelet loss and leukocyte activation compared with the standard comparator PTFE as well as reducing bacterial biofilm formation in vitro by more than 82% compared with silicone. Poly(isobornyl acrylate-co-triethylene glycol methacrylate) (75:25) is identified as the optimal material across all these measures reducing P. aeruginosa biofilm formation by up to 86% in vivo in a murine foreign body infection model compared with uncoated silicone. © 2020 The Authors
  • Item
    Caspase-1 inflammasome activity in patients with Staphylococcus aureus bacteremia
    (Oxford : Wiley-Blackwell, 2019) Rasmussen, Gunlög; Idosa, Berhane Asfaw; Bäckman, Anders; Monecke, Stefan; Strålin, Kristoffer; Särndahl, Eva; Söderquist, Bo
    The inflammasome is a multiprotein complex that mediates caspase-1 activation with subsequent maturation of the proinflammatory cytokines IL-1ß and IL-18. The NLRP3 inflammasome is known to be activated by Staphylococcus aureus, one of the leading causes of bacteremia worldwide. Inflammasome activation and regulation in response to bacterial infection have been found to be of importance for a balanced host immune response. However, inflammasome signaling in vivo in humans initiated by S. aureus is currently sparsely studied. This study therefore aimed to investigate NLRP3 inflammasome activity in 20 patients with S. aureus bacteremia (SAB), by repeated measurement during the first week of bacteremia, compared with controls. Caspase-1 activity was measured in monocytes and neutrophils by flow cytometry detecting FLICA (fluorescent-labeled inhibitor of caspase-1), while IL-1ß and IL-18 was measured by Luminex and ELISA, respectively. As a measure of inflammasome priming, messenger RNA (mRNA) expression of NLRP3, CASP1 (procaspase-1), and IL1B (pro-IL-1ß) was analyzed by quantitative PCR. We found induced caspase-1 activity in innate immune cells with subsequent release of IL-18 in patients during the acute phase of bacteremia, indicating activation of the inflammasome. There was substantial interindividual variation in caspase-1 activity between patients with SAB. We also found an altered inflammasome priming with low mRNA levels of NLRP3 accompanied by elevated mRNA levels of IL1B. This increased knowledge of the individual host immune response in SAB could provide support in the effort to optimize management and treatment of each individual patient. © 2019 The Authors. Microbiology and Immunology published by The Societies and John Wiley & Sons Australia, Ltd