Search Results

Now showing 1 - 10 of 16
  • Item
    Poly(2-alkyl-2-oxazoline)-Heparin Hydrogels—Expanding the Physicochemical Parameter Space of Biohybrid Materials
    (Weinheim : Wiley-VCH, 2021) Hahn, Dominik; Sonntag, Jannick M.; Lück, Steffen; Maitz, Manfred F.; Freudenberg, Uwe; Jordan, Rainer; Werner, Carsten
    Poly(ethylene glycol) (PEG)-glycosaminoglycan (GAG) hydrogel networks are established as very versatile biomaterials. Herein, the synthetic gel component of the biohybrid materials is systematically varied by combining different poly(2-alkyl-2-oxazolines) (POx) with heparin applying a Michael-type addition crosslinking scheme: POx of gradated hydrophilicity and temperature-responsiveness provides polymer networks of distinctly different stiffness and swelling. Adjusting the mechanical properties and the GAG concentration of the gels to similar values allows for modulating the release of GAG-binding growth factors (VEGF165 and PDGF-BB) by the choice of the POx and its temperature-dependent conformation. Adsorption of fibronectin, growth of fibroblasts, and bacterial adhesion scale with the hydrophobicity of the gel-incorporated POx. In vitro hemocompatibility tests with freshly drawn human whole blood show advantages of POx-based gels compared to the PEG-based reference materials. Biohybrid POx hydrogels can therefore enable biomedical technologies requiring GAG-based materials with customized and switchable physicochemical characteristics. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
  • Item
    The Biomedical Use of Silk: Past, Present, Future
    (Weinheim : Wiley-VCH, 2019) Holland, Chris; Numata, Keiji; Rnjak-Kovacina, Jelena; Seib, F. Philipp
    Humans have long appreciated silk for its lustrous appeal and remarkable physical properties, yet as the mysteries of silk are unraveled, it becomes clear that this outstanding biopolymer is more than a high-tech fiber. This progress report provides a critical but detailed insight into the biomedical use of silk. This journey begins with a historical perspective of silk and its uses, including the long-standing desire to reverse engineer silk. Selected silk structure–function relationships are then examined to appreciate past and current silk challenges. From this, biocompatibility and biodegradation are reviewed with a specific focus of silk performance in humans. The current clinical uses of silk (e.g., sutures, surgical meshes, and fabrics) are discussed, as well as clinical trials (e.g., wound healing, tissue engineering) and emerging biomedical applications of silk across selected formats, such as silk solution, films, scaffolds, electrospun materials, hydrogels, and particles. The journey finishes with a look at the roadmap of next-generation recombinant silks, especially the development pipeline of this new industry for clinical use. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Naturally drug-loaded chitin: Isolation and applications
    (Basel : MDPI, 2019) Kovalchuk, Valentine; Voronkina, Alona; Binnewerg, Björn; Schubert, Mario; Muzychka, Liubov; Wysokowski, Marcin; Tsurkan, Mikhail V.; Bechmann, Nicole; Petrenko, Iaroslav; Fursov, Andriy; Martinovic, Rajko; Ivanenko, Viatcheslav N.; Fromont, Jane; Smolii, Oleg B.; Joseph, Yvonne; Giovine, Marco; Erpenbeck, Dirk; Gelinsky, Michael; Springer, Armin; Guan, Kaomei; Bornstein, Stefan R.; Ehrlich, Hermann
    Naturally occurring three-dimensional (3D) biopolymer-based matrices that can be used in different biomedical applications are sustainable alternatives to various artificial 3D materials. For this purpose, chitin-based structures from marine sponges are very promising substitutes. Marine sponges from the order Verongiida (class Demospongiae) are typical examples of demosponges with well-developed chitinous skeletons. In particular, species belonging to the family Ianthellidae possess chitinous, flat, fan-like fibrous skeletons with a unique, microporous 3D architecture that makes them particularly interesting for applications. In this work, we focus our attention on the demosponge Ianthella flabelliformis (Linnaeus, 1759) for simultaneous extraction of both naturally occurring (“ready-to-use”) chitin scaffolds, and biologically active bromotyrosines which are recognized as potential antibiotic, antitumor, and marine antifouling substances. We show that selected bromotyrosines are located within pigmental cells which, however, are localized within chitinous skeletal fibers of I. flabelliformis. A two-step reaction provides two products: treatment with methanol extracts the bromotyrosine compounds bastadin 25 and araplysillin-I N20 sulfamate, and a subsequent treatment with acetic acid and sodium hydroxide exposes the 3D chitinous scaffold. This scaffold is a mesh-like structure, which retains its capillary network, and its use as a potential drug delivery biomaterial was examined for the first time. The results demonstrate that sponge-derived chitin scaffolds, impregnated with decamethoxine, effectively inhibit growth of the human pathogen Staphylococcus aureus in an agar diffusion assay
  • Item
    Electrochemical approach for isolation of chitin from the skeleton of the black coral cirrhipathes sp. (Antipatharia)
    (Basel : MDPI, 2020) Nowacki, Krzysztof; Stępniak, Izabela; Langer, Enrico; Tsurkan, Mikhail; Wysokowski, Marcin; Petrenko, Iaroslav; Khrunyk, Yuliya; Fursov, Andriy; Bo, Marzia; Bavestrello, Giorgio; Joseph, Yvonne; Ehrlich, Hermann
    The development of novel and effective methods for the isolation of chitin, which remains one of the fundamental aminopolysaccharides within skeletal structures of diverse marine invertebrates, is still relevant. In contrast to numerous studies on chitin extraction from crustaceans, mollusks and sponges, there are only a few reports concerning its isolation from corals, and especially black corals (Antipatharia). In this work, we report the stepwise isolation and identification of chitin from Cirrhipathes sp. (Antipatharia, Antipathidae) for the first time. The proposed method, aiming at the extraction of the chitinous scaffold from the skeleton of black coral species, combined a well-known chemical treatment with in situ electrolysis, using a concentrated Na2SO4 aqueous solution as the electrolyte. This novel method allows the isolation of a-chitin in the form of a microporous membrane-like material. Moreover, the extracted chitinous scaffold, with a well-preserved, unique pore distribution, has been extracted in an astoundingly short time (12 h) compared to the earlier reported attempts at chitin isolation from Antipatharia corals. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
  • Item
    Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection
    (Basel : MDPI, 2019) Aso, Ester; Martinsson, Isak; Appelhans, Dietmar; Effenberg, Christiane; Benseny-Cases, Nuria; Cladera, Josep; Gouras, Gunnar; Ferrer, Isidre; Klementieva, Oxana
    Poly(propylene imine) dendrimers have been shown to be promising 3-dimensional polymers for the use in the pharmaceutical and biomedical applications. Our aims of this study were first, to synthesize a novel type of dendrimer with poly(propylene imine) core and maltose-histidine shell (G4HisMal) assessing if maltose-histidine shell can improve the biocompatibility and the ability to cross the blood-brain barrier, and second, to investigate the potential of G4HisMal to protect Alzheimer disease transgenic mice from memory impairment. Our data demonstrate that G4HisMal has significantly improved biocompatibility and ability to cross the blood-brain barrier in vivo. Therefore, we suggest that a maltose-histidine shell can be used to improve biocompatibility and ability to cross the blood-brain barrier of dendrimers. Moreover, G4HisMal demonstrated properties for synapse and memory protection when administered to Alzheimer disease transgenic mice. Therefore, G4HisMal can be considered as a promising drug candidate to prevent Alzheimer disease via synapse protection. © 2019 The Authors
  • Item
    New Source of 3D Chitin Scaffolds: The Red Sea Demosponge Pseudoceratina arabica (Pseudoceratinidae, Verongiida)
    (Basel : MDPI, 2019) Shaala, Lamiaa A.; Asfour, Hani Z.; Youssef, Diaa T.A.; Żółtowska-Aksamitowska, Sonia; Wysokowski, Marcin; Tsurkan, Mikhail; Galli, Roberta; Meissner, Heike; Petrenko, Iaroslav; Tabachnick, Konstantin; Ivanenko, Viatcheslav N.; Bechmann, Nicole; Muzychka, Lyubov V.; Smolii, Oleg B.; Martinović, Rajko; Joseph, Yvonne; Jesionowski, Teofil; Ehrlich, Hermann
    The bioactive bromotyrosine-derived alkaloids and unique morphologically-defined fibrous skeleton of chitin origin have been found recently in marine demosponges of the order Verongiida. The sophisticated three-dimensional (3D) structure of skeletal chitinous scaffolds supported their use in biomedicine, tissue engineering as well as in diverse modern technologies. The goal of this study was the screening of new species of the order Verongiida to find another renewable source of naturally prefabricated 3D chitinous scaffolds. Special attention was paid to demosponge species, which could be farmed on large scale using marine aquaculture methods. In this study, the demosponge Pseudoceratina arabica collected in the coastal waters of the Egyptian Red Sea was examined as a potential source of chitin for the first time. Various bioanalytical tools including scanning electron microscopy (SEM), fluorescence microscopy, FTIR analysis, Calcofluor white staining, electrospray ionization mass spectrometry (ESI-MS), as well as a chitinase digestion assay were successfully used to confirm the discovery of a-chitin within the skeleton of P. arabica. The current finding should make an important contribution to the field of application of this verongiid sponge as a novel renewable source of biologically-active metabolites and chitin, which are important for development of the blue biotechnology especially in marine oriented biomedicine. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
  • Item
    Express method for isolation of ready-to-use 3D chitin scaffolds from aplysina archeri (aplysineidae: verongiida) demosponge
    (Basel : MDPI, 2019) Klinger, Christine; Zółtowska-Aksamitowska, Sonia; Wysokowski, Marcin; Tsurkan, Mikhail V.; Galli, Roberta; Petrenko, Iaroslav; Machałowski, Tomasz; Ereskovsky, Alexander; Martinović, Rajko; Muzychka, Lyubov; Smolii, Oleg B.; Bechmann, Nicole; Ivanenko, Viatcheslav; Schupp, Peter J.; Jesionowski, Teofil; Giovine, Marco; Bornstein, Stefan R.; Voronkina, Alona; Ehrlich, Hermann
    Sponges are a valuable source of natural compounds and biomaterials for many biotechnological applications. Marine sponges belonging to the order Verongiida are known to contain both chitin and biologically active bromotyrosines. Aplysina archeri (Aplysineidae: Verongiida) is well known to contain bromotyrosines with relevant bioactivity against human and animal diseases. The aim of this study was to develop an express method for the production of naturally prefabricated 3D chitin and bromotyrosine-containing extracts simultaneously. This new method is based on microwave irradiation (MWI) together with stepwise treatment using 1% sodium hydroxide, 20% acetic acid, and 30% hydrogen peroxide. This approach, which takes up to 1 h, made it possible to isolate chitin from the tube-like skeleton of A. archeri and to demonstrate the presence of this biopolymer in this sponge for the first time. Additionally, this procedure does not deacetylate chitin to chitosan and enables the recovery of ready-to-use 3D chitin scaffolds without destruction of the unique tube-like fibrous interconnected structure of the isolated biomaterial. Furthermore, these mechanically stressed fibers still have the capacity for saturation with water, methylene blue dye, crude oil, and blood, which is necessary for the application of such renewable 3D chitinous centimeter-sized scaffolds in diverse technological and biomedical fields. © 2019 by the authors.
  • Item
    Multicomponent Conjugates of Anticancer Drugs and Monoclonal Antibody with PAMAM Dendrimers to Increase Efficacy of HER-2 Positive Breast Cancer Therapy
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Marcinkowska, Monika; Stanczyk, Maciej; Janaszewska, Anna; Sobierajska, Ewelina; Chworos, Arkadiusz; Klajnert-Maculewicz, Barbara
    Purpose: Conjugation of nanocarriers with antibodies that bind to specific membrane receptors that are overexpressed in cancer cells enables targeted delivery. In the present study, we developed and synthesised two PAMAM dendrimer-trastuzumab conjugates that carried docetaxel or paclitaxel, specifically targeted to cells which overexpressed HER-2. Methods: The 1H NMR, 13C NMR, FTIR and RP-HPLC were used to analyse the characteristics of the products and assess their purity. The toxicity of PAMAM-trastuzumab, PAMAM-doc-trastuzumab and PAMAM-ptx-trastuzumab conjugates was determined using MTT assay and compared with free trastuzumab, docetaxel and paclitaxel toward HER-2-positive (SKBR-3) and negative (MCF-7) human breast cancer cell lines. The cellular uptake and internal localisation were studied using flow cytometry and confocal microscopy, respectively. Results: The PAMAM-drug-trastuzumab conjugates in particular showed extremely high toxicity toward the HER-2-positive SKBR-3 cells and very low toxicity towards to HER-2-negative MCF-7 cells. As expected, the HER-2-positive SKBR-3 cell line accumulated trastuzumab from both conjugates rapidly; but surprisingly, although a large amount of PAMAM-ptx-trastuzumab conjugate was observed in the HER-2-negative MCF-7 cells. Confocal microscopy confirmed the intracellular localisation of analysed compounds. The key result of fluorescent imaging was the identification of strong selective binding of the PAMAM-doc-trastuzumab conjugate with HER-2-positive SKBR-3 cells only. Conclusions: Our results confirm the high selectivity of PAMAM-doc-trastuzumab and PAMAM-ptx-trastuzumab conjugates for HER-2-positive cells, and demonstrate the utility of trastuzumab as a targeting agent. Therefore, the analysed conjugates present an promising approach for the improvement of efficacy of targeted delivery of anticancer drugs such as docetaxel or paclitaxel. © 2019, The Author(s).
  • Item
    Sugar Modification Enhances Cytotoxic Activity of PAMAM-Doxorubicin Conjugate in Glucose-Deprived MCF-7 Cells – Possible Role of GLUT1 Transporter
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Sztandera, Krzysztof; Działak, Paula; Marcinkowska, Monika; Stańczyk, Maciej; Gorzkiewicz, Michał; Janaszewska, Anna; Klajnert-Maculewicz, Barbara
    Purpose: In order to overcome the obstacles and side effects of classical chemotherapy, numerous studies have been performed to develop the treatment based on targeted transport of active compounds directly to the site of action. Since tumor cells are featured with intensified glucose metabolism, we set out to develop innovative, glucose-modified PAMAM dendrimer for the delivery of doxorubicin to breast cancer cells. Methods: PAMAM-dox-glc conjugate was synthesized and characterized by 1H NMR, FT-IR, size and zeta potential measurements. The drug release rate from conjugate was evaluated by dialysis under different pH conditions. The expression level of GLUT family receptors in cells cultured in full and glucose-deprived medium was evaluated by quantitative real-time RT-PCR and flow cytometry. The cytotoxicity of conjugate in presence or absence of GLUT1 inhibitors was determined by MTT assay. Results: We showed that PAMAM-dox-glc conjugate exhibits pH-dependent drug release and increased cytotoxic activity compared to free drug in cells cultured in medium without glucose. Further, we proved that these cells overexpress transporters of GLUT family. The toxic effect of conjugate was eliminated by the application of specific GLUT1 inhibitors. Conclusion: Our findings revealed that the glucose moiety plays a crucial role in the recognition of cells with high expression of GLUT receptors. By selectively blocking GLUT1 transporter we showed its importance for the cytotoxic activity of PAMAM-dox-glc conjugate. These results suggest that PAMAM-glucose formulations may constitute an efficient platform for the specific delivery of anticancer drugs to tumor cells overexpressing transporters of GLUT family. © 2019, The Author(s).
  • Item
    Hyaluronan Graft Copolymers Bearing Fatty-Acid Residues as Self-Assembling Nanoparticles for Olanzapine Delivery
    (Basel : MDPI, 2019) Paolino, Marco; Licciardi, Mariano; Savoca, Cristina; Giammona, Gaetano; De Mohac, Laura Modica; Reale, Annalisa; Giuliani, Germano; Komber, Hartmut; Donati, Alessandro; Leone, Gemma; Magnani, Agnese; Anzini, Maurizio; Cappelli, Andrea
    In order to evaluate the potential of a technology platform based on hyaluronan copolymers grafted with propargylated ferulate fluorophores (HA-FA-Pg) in the development of drug delivery systems, the propargyl groups of HA-FA-Pg derivatives were employed with oleic acid (OA) or stearic acid (SA) residues across a biocompatible hexa(ethylene glycol) (HEG) spacer. The designed materials (i.e., HA-FA-HEG-OA or HA-FA-HEG-SA) showed clear-cut aggregation features in an aqueous environment, as confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), generating nanoaggregate systems. In fact, HA-FA-HEG-OA and HA-FA-HEG-SA derivatives showed the property to create self-assembled cytocompatible nanostructured aggregates in water, thanks to the simultaneous presence of hydrophilic portions in the polymeric backbone, such as hyaluronic acid, and hydrophobic portions in the side chains. Furthermore, the designed materials interact with living cells showing a high degree of cytocompatibility. The potential ability of nanosystems to load pharmacologically active molecules was assessed by the physical entrapment of olanzapine into both polymeric systems. The drug loading evaluation demonstrated that the nanoparticles are able to incorporate a good quantity of olanzapine, as well as improve drug solubility, release profile, and cytocompatibility. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.