Search Results

Now showing 1 - 10 of 18
  • Item
    A High-Voltage, Dendrite-Free, and Durable Zn–Graphite Battery
    (Weinheim : Wiley-VCH, 2019) Wang, Gang; Kohn, Benjamin; Scheler, Ulrich; Wang, Faxing; Oswald, Steffen; Löffler, Markus; Tan, Deming; Zhang, Panpan; Zhang, Jian; Feng, Xinliang
    The intrinsic advantages of metallic Zn, like high theoretical capacity (820 mAh g−1), high abundance, low toxicity, and high safety have driven the recent booming development of rechargeable Zn batteries. However, the lack of high-voltage electrolyte and cathode materials restricts the cell voltage mostly to below 2 V. Moreover, dendrite formation and the poor rechargeability of the Zn anode hinder the long-term operation of Zn batteries. Here a high-voltage and durable Zn–graphite battery, which is enabled by a LiPF6-containing hybrid electrolyte, is reported. The presence of LiPF6 efficiently suppresses the anodic oxidation of Zn electrolyte and leads to a super-wide electrochemical stability window of 4 V (vs Zn/Zn2+). Both dendrite-free Zn plating/stripping and reversible dual-anion intercalation into the graphite cathode are realized in the hybrid electrolyte. The resultant Zn–graphite battery performs stably at a high voltage of 2.8 V with a record midpoint discharge voltage of 2.2 V. After 2000 cycles at a high charge–discharge rate, high capacity retention of 97.5% is achieved with ≈100% Coulombic efficiency. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    Complex Metal Nanostructures with Programmable Shapes from Simple DNA Building Blocks
    (Weinheim : Wiley-VCH, 2021) Ye, Jingjing; Aftenieva, Olha; Bayrak, Türkan; Jain, Archa; König, Tobias A.F.; Erbe, Artur; Seidel, Ralf
    Advances in DNA nanotechnology allow the design and fabrication of highly complex DNA structures, uisng specific programmable interactions between smaller nucleic acid building blocks. To convey this concept to the fabrication of metallic nanoparticles, an assembly platform is developed based on a few basic DNA structures that can serve as molds. Programming specific interactions between these elements allows the assembly of mold superstructures with a range of different geometries. Subsequent seeded growth of gold within the mold cavities enables the synthesis of complex metal structures including tightly DNA-caged particles, rolling-pin- and dumbbell-shaped particles, as well as T-shaped and loop particles with high continuity. The method further supports the formation of higher-order assemblies of the obtained metal geometries. Based on electrical and optical characterizations, it is expected that the developed platform is a valuable tool for a self-assembly-based fabrication of nanoelectronic and nanooptic devices. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    Amphiphilic Copolymers for Versatile, Facile, and In Situ Tunable Surface Biofunctionalization
    (Weinheim : Wiley-VCH, 2021) Ruland, André; Schenker, Saskia; Schirmer, Lucas; Friedrichs, Jens; Meinhardt, Andrea; Schwartz, Véronique B.; Kaiser, Nadine; Konradi, Rupert; MacDonald, William; Helmecke, Tina; Sikosana, Melissa K.L.N.; Valtin, Juliane; Hahn, Dominik; Renner, Lars D.; Werner, Carsten; Freudenberg, Uwe
    Precision surface engineering is key to advanced biomaterials. A new platform of PEGylated styrene-maleic acid copolymers for adsorptive surface biofunctionalization is reported. Balanced amphiphilicity renders the copolymers water-soluble but strongly affine for surfaces. Fine-tuning of their molecular architecture provides control over adsorptive anchorage onto specific materials-which is why they are referred to as "anchor polymers" (APs)-and over structural characteristics of the adsorbed layers. Conjugatable with an array of bioactives-including cytokine-complexing glycosaminoglycans, cell-adhesion-mediating peptides and antimicrobials-APs can be applied to customize materials for demanding biotechnologies in uniquely versatile, simple, and robust ways. Moreover, homo- and heterodisplacement of adsorbed APs provide unprecedented means of in situ alteration and renewal of the functionalized surfaces. The related options are exemplified with proof-of-concept experiments of controlled bacterial adhesion, human umbilical vein endothelial cell, and induced pluripotent cell growth on AP-functionalized surfaces.
  • Item
    Controlling Surface Wettability for Automated In Situ Array Synthesis and Direct Bioscreening
    (Weinheim : Wiley-VCH, 2021) Lin, Weilin; Gandhi, Shanil; Oviedo Lara, Alan Rodrigo; Thomas, Alvin K.; Helbig, Ralf; Zhang, Yixin
    The in situ synthesis of biomolecules on glass surfaces for direct bioscreening can be a powerful tool in the fields of pharmaceutical sciences, biomaterials, and chemical biology. However, it is still challenging to 1) achieve this conventional multistep combinatorial synthesis on glass surfaces with small feature sizes and high yields and 2) develop a surface which is compatible with solid-phase syntheses, as well as the subsequent bioscreening. This work reports an amphiphilic coating of a glass surface on which small droplets of polar aprotic organic solvents can be deposited with an enhanced contact angle and inhibited motion to permit fully automated multiple rounds of the combinatorial synthesis of small-molecule compounds and peptides. This amphiphilic coating can be switched into a hydrophilic network for protein- and cell-based screening. Employing this in situ synthesis method, chemical space can be probed via array technology with unprecedented speed for various applications, such as lead discovery/optimization in medicinal chemistry and biomaterial development.
  • Item
    Thiophene-Bridged Donor–Acceptor sp2-Carbon-Linked 2D Conjugated Polymers as Photocathodes for Water Reduction
    (Weinheim : Wiley-VCH, 2021) Xu, Shunqi; Sun, Hanjun; Addicoat, Matthew; Biswal, Bishnu P.; He, Fan; Park, SangWook; Paasch, Silvia; Zhang, Tao; Sheng, Wenbo; Brunner, Eike; Hou, Yang; Richter, Marcus; Feng, Xinliang
    Photoelectrochemical (PEC) water reduction, converting solar energy into environmentally friendly hydrogen fuel, requires delicate design and synthesis of semiconductors with appropriate bandgaps, suitable energy levels of the frontier orbitals, and high intrinsic charge mobility. In this work, the synthesis of a novel bithiophene-bridged donor–acceptor-based 2D sp2-carbon-linked conjugated polymer (2D CCP) is demonstrated. The Knoevenagel polymerization between the electron-accepting building block 2,3,8,9,14,15-hexa(4-formylphenyl) diquinoxalino[2,3-a:2′,3′-c]phenazine (HATN-6CHO) and the first electron-donating linker 2,2′-([2,2′-bithiophene]-5,5′-diyl)diacetonitrile (ThDAN) provides the 2D CCP-HATNThDAN (2D CCP-Th). Compared with the corresponding biphenyl-bridged 2D CCP-HATN-BDAN (2D CCP-BD), the bithiophene-based 2D CCP-Th exhibits a wide light-harvesting range (up to 674 nm), a optical energy gap (2.04 eV), and highest energy occupied molecular orbital–lowest unoccupied molecular orbital distributions for facilitated charge transfer, which make 2D CCP-Th a promising candidate for PEC water reduction. As a result, 2D CCP-Th presents a superb H2-evolution photocurrent density up to ≈7.9 µA cm−2 at 0 V versus reversible hydrogen electrode, which is superior to the reported 2D covalent organic frameworks and most carbon nitride materials (0.09–6.0 µA cm−2). Density functional theory calculations identify the thiophene units and cyano substituents at the vinylene linkage as active sites for the evolution of H2. © 2020 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    A Printable Paste Based on a Stable n-Type Poly[Ni-tto] Semiconducting Polymer
    (Basel : MDPI, 2019) Tkachov, Roman; Stepien, Lukas; Greifzu, Moritz; Kiriy, Anton; Kiriy, Nataliya; Schüler, Tilman; Schmiel, Tino; López, Elena; Brückner, Frank; Leyens, Christoph
    Polynickeltetrathiooxalate (poly[Ni-tto]) is an n-type semiconducting polymer having outstanding thermoelectric characteristics and exhibiting high stability under ambient conditions. However, its insolubility limits its use in organic electronics. This work is devoted to the production of a printable paste based on a poly[Ni-tto]/PVDF composite by thoroughly grinding the powder in a ball mill. The resulting paste has high homogeneity and is characterized by rheological properties that are well suited to the printing process. High-precision dispenser printing allows one to apply both narrow lines and films of poly[Ni-tto]-composite with a high degree of smoothness. The resulting films have slightly better thermoelectric properties compared to the original polymer powder. A flexible, fully organic double-leg thermoelectric generator with six thermocouples was printed by dispense printing using the poly[Ni-tto]-composite paste as n-type material and a commercial PEDOT-PSS paste as p-type material. A temperature gradient of 100 K produces a power output of about 20 nW. © 2019 by the authors.
  • Item
    Funktionalisierte Kern-Schale-Partikel als Träger zur Enzymimmobilisierung und deren Anwendung
    (Weinheim : Wiley-VCH Verl., 2020) Matura, Anke; Köpke, Dorina; Marschelke, Claudia; Kramer, Julius; Synytska, Alla; Sallat, Marco
    Mono- und bifunktionale hybride Kern-Schale-Partikel wurden für die Enzymimmobilisierung eingesetzt. An monofunktionalen Poly(2-dimethylamino)ethylmethacrylat-modifizierten Partikeln wurden die idealen Bedingungen für die Immobilisierung untersucht. Anschließend erfolgte die Übertragung auf bifunktionale Janus-Partikel-Systeme, mit denen gleichzeitig die schaltbare Abtrennung und der erneute Einsatz der Enzyme möglich waren. Abschließend wurde der mehrfache Einsatz der enzymbeladenen Partikel modellhaft am Beispiel der Prozesswasserentfärbung aus der Textilindustrie mit Laccase gezeigt und eine Kostenrechnung durchgeführt.
  • Item
    Tailoring Magnetic Features in Zigzag-Edged Nanographenes by Controlled Diels–Alder Reactions
    (Weinheim : Wiley-VCH, 2020) Ajayakumar, M.R.; Fu, Yubin; Liu, Fupin; Komber, Hartmut; Tkachova, Valeriya; Xu, Chi; Zhou, Shengqiang; Popov, Alexey A.; Liu, Junzhi; Feng, Xinliang
    Nanographenes (NGs) with tunable electronic and magnetic properties have attracted enormous attention in the realm of carbon-based nanoelectronics. In particular, NGs with biradical character at the ground state are promising building units for molecular spintronics. However, most of the biradicaloids are susceptible to oxidation under ambient conditions and photolytic degradation, which hamper their further applications. Herein, we demonstrated the feasibility of tuning the magnetic properties of zigzag-edged NGs in order to enhance their stability via the controlled Diels–Alder reactions of peri-tetracene (4-PA). The unstable 4-PA (y0=0.72; half-life, t1/2=3 h) was transformed into the unprecedented benzo-peri-tetracenes (BPTs) by a one-side Diels–Alder reaction, which featured a biradical character at the ground state (y0=0.60) and exhibited remarkable stability under ambient conditions for several months. In addition, the fully zigzag-edged circumanthracenes (CAs) were achieved by two-fold or stepwise Diels–Alder reactions of 4-PA, in which the magnetic properties could be controlled by employing the corresponding dienophiles. Our work reported herein opens avenues for the synthesis of novel zigzag-edged NGs with tailor-made magnetic properties. © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Dehydropolymerisation of Methylamine Borane and an N-Substituted Primary Amine Borane Using a PNP Fe Catalyst
    (Weinheim : Wiley-VCH, 2020) Anke, Felix; Boye, Susanne; Spannenberg, Anke; Lederer, Albena; Heller, Detlef; Beweries, Torsten
    Dehydropolymerisation of methylamine borane (H3B⋅NMeH2) using the well-known iron amido complex [(PNP)Fe(H)(CO)] (PNP=N(CH2CH2PiPr2)2) (1) gives poly(aminoborane)s by a chain-growth mechanism. In toluene, rapid dehydrogenation of H3B⋅NMeH2 following first-order behaviour as a limiting case of a more general underlying Michaelis–Menten kinetics is observed, forming aminoborane H2B=NMeH, which selectively couples to give high-molecular-weight poly(aminoborane)s (H2BNMeH)n and only traces of borazine (HBNMe)3 by depolymerisation after full conversion. Based on a series of comparative experiments using structurally related Fe catalysts and dimethylamine borane (H3B⋅NMe2H) polymer formation is proposed to occur by nucleophilic chain growth as reported earlier computationally and experimentally. A silyl functionalised primary borane H3B⋅N(CH2SiMe3)H2 was studied in homo- and co-dehydropolymerisation reactions to give the first examples for Si containing poly(aminoborane)s. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Direct Observation of Plasmon Band Formation and Delocalization in Quasi-Infinite Nanoparticle Chains
    (Washington, DC : ACS Publ., 2019) Mayer, Martin; Potapov, Pavel L.; Pohl, Darius; Steiner, Anja Maria; Schultz, Johannes; Rellinghaus, Bernd; Lubk, Axel; König, Tobias A.F.; Fery, Andreas
    Chains of metallic nanoparticles sustain strongly confined surface plasmons with relatively low dielectric losses. To exploit these properties in applications, such as waveguides, the fabrication of long chains of low disorder and a thorough understanding of the plasmon-mode properties, such as dispersion relations, are indispensable. Here, we use a wrinkled template for directed self-assembly to assemble chains of gold nanoparticles. With this up-scalable method, chain lengths from two particles (140 nm) to 20 particles (1500 nm) and beyond can be fabricated. Electron energy-loss spectroscopy supported by boundary element simulations, finite-difference time-domain, and a simplified dipole coupling model reveal the evolution of a band of plasmonic waveguide modes from degenerated single-particle modes in detail. In striking difference from plasmonic rod-like structures, the plasmon band is confined in excitation energy, which allows light manipulations below the diffraction limit. The non-degenerated surface plasmon modes show suppressed radiative losses for efficient energy propagation over a distance of 1500 nm. © 2019 American Chemical Society.