Search Results

Now showing 1 - 3 of 3
  • Item
    Phase Formation, Microstructure and Mechanical Properties of Mg67Ag33 as Potential Biomaterial
    (Basel : MDPI, 2021) Kosiba, Konrad; Prashanth, Konda Gokuldoss; Scudino, Sergio
    The phase and microstructure formation as well as mechanical properties of the rapidly solidified Mg67Ag33 (at. %) alloy were investigated. Owing to kinetic constraints effective during rapid cooling, the formation of equilibrium phases is suppressed. Instead, the microstructure is mainly composed of oversaturated hexagonal closest packed Mg-based dendrites surrounded by a mixture of phases, as probed by X-ray diffraction, electron microscopy and energy dispersive X-ray spectroscopy. A possible non-equilibrium phase diagram is suggested. Mainly because of the fine-grained dendritic and interdendritic microstructure, the material shows appreciable mechanical properties, such as a compressive yield strength and Young’s modulus of 245 ± 5 MPa and 63 ± 2 GPa, respectively. Due to this low Young’s modulus, the Mg67Ag33 alloy has potential for usage as biomaterial and challenges ahead, such as biomechanical compatibility, biodegradability and antibacterial properties are outlined.
  • Item
    Synthesis of Bulk Zr48Cu36Al8Ag8 Metallic Glass by Hot Pressing of Amorphous Powders
    (Basel : MDPI, 2021) He, Tianbing; Ciftci, Nevaf; Uhlenwinkel, Volker; Scudino, Sergio
    The critical cooling rate necessary for glass formation via melt solidification poses inherent constraints on sample size using conventional casting techniques. This drawback can be overcome by pressure-assisted sintering of metallic glass powders at temperatures above the glass transition, where the material shows viscous-flow behavior. Partial crystallization during sintering usually exacerbates the inherent brittleness of metallic glasses and thus needs to be avoided. In order to achieve high density of the bulk specimens while avoiding (or minimizing) crystallization, the optimal combination between low viscosity and long incubation time for crystallization must be identified. Here, by carefully selecting the time–temperature window for powder consolidation, we synthesized highly dense Zr48Cu36Ag8Al8 bulk metallic glass (BMG) with mechanical properties comparable with its cast counterpart. The larger ZrCu-based BMG specimens fabricated in this work could then be post-processed by flash-annealing, offering the possibility to fabricate monolithic metallic glasses and glass–matrix composites with enhanced room-temperature plastic deformation.
  • Item
    Effect of Build Orientation on the Microstructure, Mechanical and Corrosion Properties of a Biodegradable High Manganese Steel Processed by Laser Powder Bed Fusion
    (Basel : MDPI, 2021) Otto, M.; Pilz, S.; Gebert, A.; Kühn, U.; Hufenbach, J.
    In the last decade, additive manufacturing technologies like laser powder bed fusion (LPBF) have emerged strongly. However, the process characteristics involving layer-wise build-up of the part and the occurring high, directional thermal gradient result in significant changes of the microstructure and the related properties compared to traditionally fabricated materials. This study presents the influence of the build direction (BD) on the microstructure and resulting properties of a novel austenitic Fe-30Mn-1C-0.02S alloy processed via LPBF. The fabricated samples display a {011} texture in BD which was detected by electron backscatter diffraction. Furthermore, isolated binding defects could be observed between the layers. Quasi-static tensile and compression tests displayed that the yield, ultimate tensile as well as the compressive yield strength are significantly higher for samples which were built with their longitudinal axis perpendicular to BD compared to their parallel counterparts. This was predominantly ascribed to the less severe effects of the sharp-edged binding defects loaded perpendicular to BD. Additionally, a change of the Young’s modulus in dependence of BD could be demonstrated, which is explained by the respective texture. Potentiodynamic polarization tests conducted in a simulated body fluid revealed only slight differences of the corrosion properties in dependence of the build design.