Search Results

Now showing 1 - 10 of 54
  • Item
    Lightweight polymer-carbon composite current collector for lithium-ion batteries
    (Basel : MDPI, 2020) Fritsch, Marco; Coeler, Matthias; Kunz, Karina; Krause, Beate; Marcinkowski, Peter; Pötschke, Petra; Wolter, Mareike; Michaelis, Alexander
    A hermetic dense polymer-carbon composite-based current collector foil (PCCF) for lithium-ion battery applications was developed and evaluated in comparison to state-of-the-art aluminum (Al) foil collector. Water-processed LiNi0.5Mn1.5O4 (LMNO) cathode and Li4Ti5O12 (LTO) anode coatings with the integration of a thin carbon primer at the interface to the collector were prepared. Despite the fact that the laboratory manufactured PCCF shows a much higher film thickness of 55 µm compared to Al foil of 19 µm, the electrode resistance was measured to be by a factor of 5 lower compared to the Al collector, which was attributed to the low contact resistance between PCCF, carbon primer and electrode microstructure. The PCCF-C-primer collector shows a sufficient voltage stability up to 5 V vs. Li/Li+ and a negligible Li-intercalation loss into the carbon primer. Electrochemical cell tests demonstrate the applicability of the developed PCCF for LMNO and LTO electrodes, with no disadvantage compared to state-of-the-art Al collector. Due to a 50% lower material density, the lightweight and hermetic dense PCCF polymer collector offers the possibility to significantly decrease the mass loading of the collector in battery cells, which can be of special interest for bipolar battery architectures. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    A Printable Paste Based on a Stable n-Type Poly[Ni-tto] Semiconducting Polymer
    (Basel : MDPI, 2019) Tkachov, Roman; Stepien, Lukas; Greifzu, Moritz; Kiriy, Anton; Kiriy, Nataliya; Schüler, Tilman; Schmiel, Tino; López, Elena; Brückner, Frank; Leyens, Christoph
    Polynickeltetrathiooxalate (poly[Ni-tto]) is an n-type semiconducting polymer having outstanding thermoelectric characteristics and exhibiting high stability under ambient conditions. However, its insolubility limits its use in organic electronics. This work is devoted to the production of a printable paste based on a poly[Ni-tto]/PVDF composite by thoroughly grinding the powder in a ball mill. The resulting paste has high homogeneity and is characterized by rheological properties that are well suited to the printing process. High-precision dispenser printing allows one to apply both narrow lines and films of poly[Ni-tto]-composite with a high degree of smoothness. The resulting films have slightly better thermoelectric properties compared to the original polymer powder. A flexible, fully organic double-leg thermoelectric generator with six thermocouples was printed by dispense printing using the poly[Ni-tto]-composite paste as n-type material and a commercial PEDOT-PSS paste as p-type material. A temperature gradient of 100 K produces a power output of about 20 nW. © 2019 by the authors.
  • Item
    The Orientation of Strain-Induced Crystallites in Uniaxially-Strained, Thin and Wide Bands Made from Natural Rubber
    (Basel : MDPI, 2019) Schneider, Konrad; Schwartzkopf, Matthias
    Vulcanized natural rubber (unfilled and filled with 20 phr carbon black) is strained. We suppress the macroscopic formation of fiber symmetry by choosing strip-shaped samples ("pure-shear geometry") and investigate the orientation of the resulting crystallites by two-dimensional wide-angle X-ray diffraction (WAXD), additionally rotating the sample tape about the straining direction. Indications of a directed reinforcing effect of the strain-induced crystallization (SIC) in the thin strip are found. In the filled material fewer crystallites are oriented and the orientation distribution of the oriented crystallites is less perfect. The results confirm, that it is important for the evaluation of crystallinity under deformation to check, whether fiber symmetry can be assumed. This has consequences in particular on the quantitative interpretation of space-resolved scanning experiments in the vicinity of crack tips. Furthermore it raises the question, whether there is an asymmetric reinforcing effect of the SIC in the vicinity of crack tips inside natural rubber. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Naturally drug-loaded chitin: Isolation and applications
    (Basel : MDPI, 2019) Kovalchuk, Valentine; Voronkina, Alona; Binnewerg, Björn; Schubert, Mario; Muzychka, Liubov; Wysokowski, Marcin; Tsurkan, Mikhail V.; Bechmann, Nicole; Petrenko, Iaroslav; Fursov, Andriy; Martinovic, Rajko; Ivanenko, Viatcheslav N.; Fromont, Jane; Smolii, Oleg B.; Joseph, Yvonne; Giovine, Marco; Erpenbeck, Dirk; Gelinsky, Michael; Springer, Armin; Guan, Kaomei; Bornstein, Stefan R.; Ehrlich, Hermann
    Naturally occurring three-dimensional (3D) biopolymer-based matrices that can be used in different biomedical applications are sustainable alternatives to various artificial 3D materials. For this purpose, chitin-based structures from marine sponges are very promising substitutes. Marine sponges from the order Verongiida (class Demospongiae) are typical examples of demosponges with well-developed chitinous skeletons. In particular, species belonging to the family Ianthellidae possess chitinous, flat, fan-like fibrous skeletons with a unique, microporous 3D architecture that makes them particularly interesting for applications. In this work, we focus our attention on the demosponge Ianthella flabelliformis (Linnaeus, 1759) for simultaneous extraction of both naturally occurring (“ready-to-use”) chitin scaffolds, and biologically active bromotyrosines which are recognized as potential antibiotic, antitumor, and marine antifouling substances. We show that selected bromotyrosines are located within pigmental cells which, however, are localized within chitinous skeletal fibers of I. flabelliformis. A two-step reaction provides two products: treatment with methanol extracts the bromotyrosine compounds bastadin 25 and araplysillin-I N20 sulfamate, and a subsequent treatment with acetic acid and sodium hydroxide exposes the 3D chitinous scaffold. This scaffold is a mesh-like structure, which retains its capillary network, and its use as a potential drug delivery biomaterial was examined for the first time. The results demonstrate that sponge-derived chitin scaffolds, impregnated with decamethoxine, effectively inhibit growth of the human pathogen Staphylococcus aureus in an agar diffusion assay
  • Item
    Electrochemical approach for isolation of chitin from the skeleton of the black coral cirrhipathes sp. (Antipatharia)
    (Basel : MDPI, 2020) Nowacki, Krzysztof; Stępniak, Izabela; Langer, Enrico; Tsurkan, Mikhail; Wysokowski, Marcin; Petrenko, Iaroslav; Khrunyk, Yuliya; Fursov, Andriy; Bo, Marzia; Bavestrello, Giorgio; Joseph, Yvonne; Ehrlich, Hermann
    The development of novel and effective methods for the isolation of chitin, which remains one of the fundamental aminopolysaccharides within skeletal structures of diverse marine invertebrates, is still relevant. In contrast to numerous studies on chitin extraction from crustaceans, mollusks and sponges, there are only a few reports concerning its isolation from corals, and especially black corals (Antipatharia). In this work, we report the stepwise isolation and identification of chitin from Cirrhipathes sp. (Antipatharia, Antipathidae) for the first time. The proposed method, aiming at the extraction of the chitinous scaffold from the skeleton of black coral species, combined a well-known chemical treatment with in situ electrolysis, using a concentrated Na2SO4 aqueous solution as the electrolyte. This novel method allows the isolation of a-chitin in the form of a microporous membrane-like material. Moreover, the extracted chitinous scaffold, with a well-preserved, unique pore distribution, has been extracted in an astoundingly short time (12 h) compared to the earlier reported attempts at chitin isolation from Antipatharia corals. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
  • Item
    Synergistic effects of anionic/cationic dendrimers and levofloxacin on antibacterial activities
    (Basel : MDPI, 2019) Wrońska, Natalia; Majoral, Jean Pierre; Appelhans, Dietmar; Bryszewska, Maria; Lisowska, Katarzyna
    Despite the numerous studies on dendrimers for biomedical applications, the antibacterial activity of anionic phosphorus dendrimers has not been explored. In our research, we evaluated the antibacterial activity of modified polycationic and polyanionic dendrimers in combination with levofloxacin (LVFX) against Gram-negative (Escherichia coli ATCC 25922, Proteus hauseri ATCC 15442) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. In the case of Gram-negative bacteria, we concluded that a combination of dendrimers and antibiotic gave satisfactory results due to a synergistic effect. The use of fluoroquinolone antibiotics, such as LVFX, not only caused resistance in disease-causing microorganisms but also increased environmental pollution. Therefore, reduction of drug dosage is of general interest. © 2019 by the authors.
  • Item
    Spider chitin: An Ultrafast Microwave-Assisted Method for Chitin Isolation from Caribena versicolor Spider Molt Cuticle
    (Basel : MDPI, 2019) Machałowski, Tomasz; Wysokowski, Marcin; Tsurkan, Mikhail V.; Galli, Roberta; Schimpf, Christian; Rafaja, David; Brendler, Erica; Viehweger, Christine; Zółtowska-Aksamitowska, Sonia; Petrenko, Iaroslav; Czaczyk, Katarzyna; Kraft, Michael; Bertau, Martin; Bechmann, Nicole; Guan, Kaomei; Bornstein, Stefan R.; Voronkina, Alona; Fursov, Andriy; Bejger, Magdalena; Biniek-Antosiak, Katarzyna; Rypniewski, Wojciech; Figlerowicz, Marek; Pokrovsky, Oleg; Jesionowski, Teofil; Ehrlich, Hermann
    Chitin, as a fundamental polysaccharide in invertebrate skeletons, continues to be actively investigated, especially with respect to new sources and the development of effective methods for its extraction. Recent attention has been focused on marine crustaceans and sponges; however, the potential of spiders (order Araneae) as an alternative source of tubular chitin has been overlooked. In this work, we focused our attention on chitin from up to 12 cm-large Theraphosidae spiders, popularly known as tarantulas or bird-eating spiders. These organisms “lose” large quantities of cuticles during their molting cycle. Here, we present for the first time a highly effective method for the isolation of chitin from Caribena versicolor spider molt cuticle, as well as its identification and characterization using modern analytical methods. We suggest that the tube-like molt cuticle of this spider can serve as a naturally prefabricated and renewable source of tubular chitin with high potential for application in technology and biomedicine. © 2019 by the authors.
  • Item
    Effects of BDNF and PEC Nanoparticles on Osteocytes
    (Basel : MDPI, 2020) Loy, Thomas Leonhard; Vehlow, David; Kauschke, Vivien; Müller, Martin; Heiss, Christian; Lips, Katrin Susanne
    Bone substitute materials loaded with mediators that stimulate fracture healing are demanded in the clinical treatment in trauma surgery and orthopedics. Brain-derived neurotrophic factor (BDNF) enhances the proliferation and differentiation of mesenchymal stem cells into osteoblast. To load the implants with BDNF, a drug delivery system that allows the release of BDNF under spatiotemporal control would improve functionality. Polyelectrolyte complex nanoparticles (PECNP) have been reported as a suitable drug delivery system. The suitability of PECNP in contact with osteocytes as the main cell type of bone is not known so far. Thus, we aimed to verify that BDNF and PECNP loaded with BDNF (PECNP+BDNF) as well as pure PECNP have no negative effects on osteocytes in vitro. Therefore, the murine osteocyte cell line MLO-Y4 was treated with BDNF and PECNP+BDNF. The effects on proliferation were analyzed by the BrdU test (n = 5). The results demonstrated a significant increase in proliferation 24 h after BDNF application, whereas PECNP+BDNF did not lead to significant changes. Thus, we conclude that BDNF is an appropriate mediator to stimulate osteocytes. Since the addition of PECNP did not affect the viability of osteocytes, we conclude that PECNP are a suitable drug delivery system for bone implants. © 2020 by the authors.
  • Item
    Solubility and selectivity effects of the anion on the adsorption of different heavy metal ions onto chitosan
    (Basel : MDPI, 2020) Weißpflog, Janek; Gündel, Alexander; Vehlow, David; Steinbach, Christine; Müller, Martin; Boldt, Regine; Schwarz, Simona; Schwarz, Dana
    The biopolymer chitosan is a very efficient adsorber material for the removal of heavy metal ions from aqueous solutions. Due to the solubility properties of chitosan it can be used as both a liquid adsorber and a solid flocculant for water treatment reaching outstanding adsorption capacities for a number of heavy metal ions. However, the type of anion corresponding to the investigated heavy metal ions has a strong influence on the adsorption capacity and sorption mechanism on chitosan. In this work, the adsorption capacity of the heavy metal ions manganese, iron, cobalt, nickel, copper, and zinc were investigated in dependence on their corresponding anions sulfate, chloride, and nitrate by batch experiments. The selectivity of the different heavy metal ions was analyzed by column experiments. © 2020 by the authors.
  • Item
    The Anomalous Influence of Polyelectrolyte Concentration on the Deposition and Nanostructure of Poly(ethyleneimine)/Poly(acrylic acid) Multilayers
    (Basel : MDPI, 2019) Müller, Martin
    The deposition and nanostructure of polyelectrolyte (PEL) multilayers (PEMs) of branched poly(ethyleneimine)/poly(acrylic acid) (PEI/PAA) onto silicon substrates was studied in terms of the dependence of pH and the PEL concentration (cPEL) in the individual adsorption steps z. Both a commercial automatic dipping device and a homebuilt automatic stream coating device (flow cell) were used. Gravimetry, SFM, transmission (TRANS) and in situ attenuated total reflection (ATR) FTIR spectroscopy were used for the quantitative determination of the adsorbed amount, thickness, chemical composition and morphology of deposited PEMs, respectively. Firstly, the combination of pH = 10 for PEI and pH = 4 for PAA, where both PEL were predominantly in the neutral state, resulted in an extraordinarily high PEM deposition, while pH combinations, where one PEL component was charged, resulted in a significantly lower PEM deposition. This was attributed to both PEL conformation effects and acid/base interactions between basic PEI and acidic PAA. Secondly, for that pH combination an exponential relationship between PEM thickness and adsorption step z was found. Thirdly, based on the results of three independent methods, the course of the deposited amount of a PEM-10 (z = 10) versus cPEL in the range 0.001 to 0.015 M at pH = 10/4 was non-monotonous showing a pronounced maximum at cPEL = 0.005 M. Analogously, for cPEL = 0.005 M a maximum of roughness and structure size was found. Fourthly, related to that finding, in situ ATR-FTIR measurements gave evidence for the release of outermost located PEI upon PAA immersion (even step) and of outermost PAA upon PEI immersion (odd step) under formation of PEL complexes in solution. These studies help us to prepare PEL-based films with a defined thickness and morphology for interaction with biofluids in the biomedical and food fields. © 2019 by the author.