Search Results

Now showing 1 - 10 of 11
  • Item
    Increasing the efficiency of optimized v-sba-15 catalysts in the selective oxidation of methane to formaldehyde by artificial neural network modelling
    (Basel : MDPI, 2020) Kunkel, Benny; Kabelitz, Anke; Buzanich, Ana Guilherme; Wohlrab, Sebastian
    The present study investigates the possibility of improving the selective oxidation of methane to formaldehyde over V-SBA-15 catalysts in two different ways. In a classical approach of catalyst optimization, the in situ synthesis of V-SBA-15 catalysts was optimized with regard to the applied pH value. Among the set of catalysts synthesized, a higher amount of incorporated vanadium, a higher content of polymeric VOx species as well as a less ordered structure of the support material were observed by increasing the pH values from 2.0 to 3.0. An optimum in performance during the selective oxidation of methane to formaldehyde with respect to activity and selectivity was found over V-SBA-15 prepared at a pH value of 2.5. With this knowledge, we have now evaluated the possibilities of reaction control using this catalyst. Specifically, artificial neural network modelling was applied after the collection of 232 training samples for obtaining insight into the influence of different reaction parameters (temperature; gas hourly space velocity (GHSV); and concentration of O2, N2 and H2O) onto methane conversion and selectivity towards formaldehyde. This optimization of reaction conditions resulted in an outstanding high space-time yield of 13.6 kgCH2O·kgcat·h−1. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Activation, deactivation and reversibility phenomena in homogeneous catalysis : A showcase based on the chemistry of rhodium/phosphine catalysts
    (Basel : MDPI, 2019) Alberico, Elisabetta; Möller, Saskia; Horstmann, Moritz; Drexler, Hans-Joachim; Heller, Detlef
    In the present work, the rich chemistry of rhodium/phosphine complexes, which are applied as homogeneous catalysts to promote a wide range of chemical transformations, has been used to showcase how the in situ generation of precatalysts, the conversion of precatalysts into the actually active species, as well as the reaction of the catalyst itself with other components in the reaction medium (substrates, solvents, additives) can lead to a number of deactivation phenomena and thus impact the efficiency of a catalytic process. Such phenomena may go unnoticed or may be overlooked, thus preventing the full understanding of the catalytic process which is a prerequisite for its optimization. Based on recent findings both from others and the authors’ laboratory concerning the chemistry of rhodium/diphosphine complexes, some guidelines are provided for the optimal generation of the catalytic active species from a suitable rhodium precursor and the diphosphine of interest; for the choice of the best solvent to prevent aggregation of coordinatively unsaturated metal fragments and sequestration of the active metal through too strong metal–solvent interactions; for preventing catalyst poisoning due to irreversible reaction with the product of the catalytic process or impurities present in the substrate. © 2019 by the authors.
  • Item
    Rice husk derived porous silica as support for pd and CeO2 for low temperature catalytic methane combustion
    (Basel : MDPI, 2019) Liu, Dongjing; Seeburg, Dominik; Kreft, Stefanie; Bindig, René; Hartmann, Ingo; Schneider, Denise; Enke, Dirk; Wohlrab, Sebastian
    The separation of Pd and CeO2 on the inner surface of controlled porous glass (CPG, obtained from phase-separated borosilicate glass after extraction) yields long-term stable and highly active methane combustion catalysts. However, the limited availability of the CPG makes such catalysts highly expensive and limits their applicability. In this work, porous silica obtained from acid leached rice husks after calcination (RHS) was used as a sustainable, cheap and broadly available substitute for the above mentioned CPG. RHS-supported Pd-CeO2 with separated CeO2 clusters and Pd nanoparticles was fabricated via subsequent impregnation/calcination of molten cerium nitrate and different amounts of palladium nitrate solution. The Pd/CeO2/RHS catalysts were employed for the catalytic methane combustion in the temperature range of 150–500◦C under methane lean conditions (1000 ppm) in a simulated off-gas consisting of 9.0 vol% O2, and 5.5 vol% CO2 balanced with N2. Additionally, tests with 10.5 vol% H2O as co-feed were carried out. The results revealed that the RHS-supported catalysts reached the performance of the cost intensive benchmark catalyst based on CPG. The incorporation of Pd-CeO2 into RHS additionally improved water-resistance compared to solely Pd/CeO2 lowering the required temperature for methane combustion in presence of 10.5 vol% H2O to values significantly below 500◦C (T90 = 425◦C). © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Application of Artificial Neural Networks in Crystal Growth of Electronic and Opto-Electronic Materials
    (Basel : MDPI, 2020) Dropka, Natasha; Holena, Martin
    In this review, we summarize the results concerning the application of artificial neural networks (ANNs) in the crystal growth of electronic and opto-electronic materials. The main reason for using ANNs is to detect the patterns and relationships in non-linear static and dynamic data sets which are common in crystal growth processes, all in a real time. The fast forecasting is particularly important for the process control, since common numerical simulations are slow and in situ measurements of key process parameters are not feasible. This important machine learning approach thus makes it possible to determine optimized parameters for high-quality up-scaled crystals in real time. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Effects of substitution pattern in phosphite ligands used in rhodium-catalyzed hydroformylation on reactivity and hydrolysis stability
    (Basel : MDPI, 2019) Kloß, Svenja; Selent, Detlef; Spannenberg, Anke; Franke, Robert; Börner, Armin; Sharif, Muhammad
    The stability of homogeneous catalytic systems is an industrially crucial topic, which, however, receives comparatively little attention from academic research. Phosphites are among the most frequently used ligands in industrial, rhodium-catalyzed n-regioselective hydroformylation. However, they are particularly vulnerable to hydrolysis. Since the decomposition of ligands should be dependent on the substitution patterns, phenyl, tert-butyl and condensed ring systems of benzopinacolphosphites were evaluated concerning their activity, regioselectivity and hydrolysis stability. A series of twelve strongly related phosphites were synthesized, tested in the hydroformylation of isomeric n-octenes, and studied in hydrolysis experiments using in situ NMR spectroscopy. Our results show that substituents in the ortho-position, especially tert-butyl substituents, enhance hydrolysis stability while maintaining compelling activity and regioselectivity. In contrast, substituents in the para-position may destabilize the phosphite. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Characterization and effect of Ag(0) vs. Ag(I) species and their localized plasmon resonance on photochemically inactive TiO 2
    (Basel : MDPI, 2019) Handoko, Chanel Tri; Moustakas, Nikolaos G.; Peppel, Tim; Springer, Armin; Oropeza, Freddy E.; Huda, Adri; Bustan, Muhammad Djoni; Yudono, Bambang; Gulo, Fakhili; Strunk, Jennifer
    Commercial TiO 2 (anatase) was successfully modified with Ag nanoparticles at different nominal loadings (1%-4%) using a liquid impregnation method. The prepared materials retained the anatase structure and contained a mixture of Ag 0 and Ag I species. Samples exhibited extended light absorption to the visible region. The effect of Ag loading on TiO 2 is studied for the photocatalytic reduction of CO 2 to CH 4 in a gas-solid process under high-purity conditions. It is remarkable that the reference TiO 2 used in this work is entirely inactive in this reaction, but it allows for studying the effect of Ag on the photocatalytic process in more detail. Only in the case of 2% Ag/TiO 2 was the formation of CH 4 from CO 2 observed. Using different light sources, an influence of the localized surface plasmon resonance (LSPR) effect of Ag is verified. A sample in which all Ag has been reduced to the metallic state was less active than the respective sample containing both Ag 0 and Ag + , indicating that a mixed oxidation state is beneficial for photocatalytic performance. These results contribute to a better understanding of the effect of metal modification of TiO 2 in photocatalytic CO 2 reduction. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Determining the location of Co2+ in zeolites by UV-Vis diffuse reflection spectroscopy : A critical view
    (Basel : MDPI, 2020) Bellmann, Andrea; Rautenberg, Christine; Bentrup, Ursula; Brückner, Angelika
    UV-Vis spectroscopy as well as in situ FTIR spectroscopy of pyridine and CO adsorption were applied to determine the nature of Co species in microporous, mesoporous, and mixed oxide materials like Co-ZSM-5, Co/Na-ZSM-5, Co/Al-SBA-15, and Co/Al2O3-SiO2. Because all sample types show comparable UV-Vis spectra with a characteristic band triplet, the former described UV-Vis band deconvolution method for determination and quantification of individual cationic sites in the zeolite appears doubtful. This is also confirmed by results of pyridine and CO adsorption revealing that all Co-zeolite samples contain two types of Co2+ species located at exchange positions as well as in oxide-like clusters independent of the Co content, while in Co/Al-SBA-15 and Co/Al2O3-SiO2 only Co2+ species in oxide-like clusters occur. Consequently, the measured UV-Vis spectra represent not exclusively isolated Co2+ species, and the characteristic triplet band is not only related to γ-, β-, and α-type Co2+ sites in the zeolite but also to those dispersed on the surface of different oxide supports. The study demonstrates that for proper characterization of the formed Co species, the use of complementary methods is required. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Facile synthesis of iron-titanate nanocomposite as a sustainable material for selective amination of substitued nitro-arenes
    (Basel : MDPI, 2020) Sohail, Manzar; Tahir, Nimra; Rubab, Anosha; Beller, Matthias; Sharif, Muhammad
    The fabrication of durable and low-cost nanostructured materials remains important in chemical, biologic and medicinal applications. Particularly, iron-based nanomaterials are of central importance due to the ‘noble’ features of iron such as its high abundance, low cost and non-toxicity. Herein we report a simple sol–gel method for the synthesis of novel iron–titanium nanocomposite-based material (Fe9TiO15@TiO2). In order to prepare this material, we made a polymeric gel using ferrocene, titanium isopropoxide and THF precursors. The calcination of this gel in air at 500◦C produced Fe-Ti bimetallic nanoparticles-based composite and nano-TiO2 as support. Noteworthy, our methodology provides an excellent control over composition, size and shape of the resulting nanoparticles. The resulted Fe-based material provides a sustainable catalyst for selective synthesis of anilines, which are key intermediates for the synthesis of several chemicals, dyes and materials, via reduction of structurally diverse and functionalized nitroarenes. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Effect of chemical solvents on the wetting behavior over time of femtosecond laser structured ti6al4v surfaces
    (Basel : MDPI, 2020) Schnell, Georg; Polley, Christian; Bartling, Stephan; Seitz, Hermann
    The effect of chemical solvents on the wetting state of laser-structured surfaces over time is systematically examined in this paper. By using a 300-fs laser, nanostructures were generated on Ti6Al4V, subsequently cleaned in an ultrasonic bath with different solvents and stored in ambient air. The static contact angle showed significant differences for cleaning with various solvents, which, depending on the applied cleaning and time, amounted up to 100°. X-ray photoelectron spectroscopy analyses reveal that the cleaning of the laser-structured surfaces affects the surface chemistry and the aging behavior of the surfaces, even with highly volatile solvents. The effect of the chemical surface modification is particularly noticeable when using alcohols for cleaning, which, due to their OH groups, cause highly hydrophilic behavior of the surface after one day of storage. Over the course of 14 days, enrichment with organic groups from the atmosphere occurs on the surface, which leads to poorer wetting on almost every structured surface. In contrast, the cleaning in hexane leads to a fast saturation of the surface with long-chain carbon groups and thus to a time-independent hydrophobic behavior.
  • Item
    Efficient palladium-catalyzed synthesis of 2-aryl propionic acids
    (Basel : MDPI, 2020) Neumann, Helfried; Sergeev, Alexey G.; Spannenberg, Anke; Beller, Matthias
    A flexible two-step, one-pot procedure was developed to synthesize 2-aryl propionic acids including the anti-inflammatory drugs naproxen and flurbiprofen. Optimal results were obtained in the presence of the novel ligand neoisopinocampheyldiphenylphosphine (NISPCPP) (9) which enabled the efficient sequential palladium-catalyzed Heck coupling of aryl bromides with ethylene and hydroxycarbonylation of the resulting styrenes to 2-aryl propionic acids. This cascade transformation leads with high regioselectivity to the desired products in good yields and avoids the need for additional purification steps. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.