Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

A Mechanistic Perspective on Plastically Flexible Coordination Polymers

2019, Bhattacharya, Biswajit, Michalchuk, Adam A.L., Silbernagl, Dorothee, Rautenberg, Max, Schmid, Thomas, Feiler, Torvid, Reimann, Klaus, Ghalgaoui, Ahmed, Sturm, Heinz, Paulus, Beate, Emmerling, Franziska

Mechanical flexibility in single crystals of covalently bound materials is a fascinating and poorly understood phenomenon. We present here the first example of a plastically flexible one-dimensional (1D) coordination polymer. The compound [Zn(μ-Cl)2(3,5-dichloropyridine)2]n is flexible over two crystallographic faces. Remarkably, the single crystal remains intact when bent to 180°. A combination of microscopy, diffraction, and spectroscopic studies have been used to probe the structural response of the crystal lattice to mechanical bending. Deformation of the covalent polymer chains does not appear to be responsible for the observed macroscopic bending. Instead, our results suggest that mechanical bending occurs by displacement of the coordination polymer chains. Based on experimental and theoretical evidence, we propose a new model for mechanical flexibility in 1D coordination polymers. Moreover, our calculations propose a cause of the different mechanical properties of this compound and a structurally similar elastic material. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Temperature-Dependent Charge Carrier Diffusion in [0001¯] Direction of GaN Determined by Luminescence Evaluation of Buried InGaN Quantum Wells

2020, Netzel, Carsten, Hoffmann, Veit, Tomm, Jens W., Mahler, Felix, Einfeldt, Sven, Weyers, Markus

Temperature-dependent transport of photoexcited charge carriers through a nominally undoped, c-plane GaN layer toward buried InGaN quantum wells is investigated by continuous-wave and time-resolved photoluminescence spectroscopy. The excitation of the buried InGaN quantum wells is dominated by charge carrier diffusion through the GaN layer; photon recycling contributes only slightly. With temperature decreasing from 310 to 10 K, the diffusion length in [0001⎯⎯] direction increases from 250 to 600 nm in the GaN layer. The diffusion length at 300 K also increases from 100 to 300 nm when increasing the excitation power density from 20 to 500 W cm−2. The diffusion constant decreases from the low-temperature value of ∼7 to 1.5 cm2 s−1 at 310 K. The temperature dependence of the diffusion constant indicates that the diffusivity at room temperature is limited by optical phonon scattering. Consequently, higher diffusion constants in GaN-based devices require a reduced operation temperature. To increase diffusion lengths at a fixed temperature, the effective recombination time has to be prolonged by reducing the number of nonradiative recombination centers.

Loading...
Thumbnail Image
Item

Covalency-Driven Preservation of Local Charge Densities in a Metal-to-Ligand Charge-Transfer Excited Iron Photosensitizer

2019, Jay, Raphael M., Eckert, Sebastian, Vaz da Cruz, Vinicius, Fondell, Mattis, Mitzner, Rolf, Föhlisch, Alexander

Covalency is found to even out charge separation after photo-oxidation of the metal center in the metal-to-ligand charge-transfer state of an iron photosensitizer. The σ-donation ability of the ligands compensates for the loss of iron 3d electronic charge, thereby upholding the initial metal charge density and preserving the local noble-gas configuration. These findings are enabled through element-specific and orbital-selective time-resolved X-ray absorption spectroscopy at the iron L-edge. Thus, valence orbital populations around the central metal are directly accessible. In conjunction with density functional theory we conclude that the picture of a localized charge-separation is inadequate. However, the unpaired spin density provides a suitable representation of the electron–hole pair associated with the electron-transfer process. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Vibronic Dynamics of Photodissociating ICN from Simulations of Ultrafast X-Ray Absorption Spectroscopy

2020, Morzan, Uriel N., Videla, Pablo E., Soley, Micheline B., Nibbering, Erik T.J., Batista, Victor S.

Ultrafast UV-pump/soft-X-ray-probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1Π1 excited state, with emphasis on the transient response in the soft-X-ray spectral region as described by the ab initio spectral lineshape averaged over the nuclear wavepacket probability density. We find that the carbon K-edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I−CN bond cleavage process. The simulated UV-pump/soft-X-ray-probe spectra exhibit detailed dynamical information, including a time-domain signature for coherent vibration associated with the photogenerated CN fragment. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Ab-Initio Real-Time Magnon Dynamics in Ferromagnetic and Ferrimagnetic Systems

2020, Singh, Nisha, Elliott, Peter, Dewhurst, J. Kay, Gross, E.K.U.

Magnonics—an emerging field of physics—is based on the collective excitations of ordered spins called spin waves. These low-energy excitations carry pure spin currents, paving the way for future technological devices working at low energies and on ultrafast timescales. The traditional ab-initio approach to predict these spin-wave energies is based on linear-response time-dependent density functional theory (LR-TDDFT) in the momentum and frequency regime. Herein, the simulation of magnon dynamics using real-time time-dependent density functional theory is demonstrated, thus extending the domain of ab-initio magnonic studies. Unlike LR-TDDFT, this enables us to observe atom-resolved dynamics of individual magnon modes and, using a supercell approach, the dynamics of several magnon modes can be observed simultaneously. The energies of these magnon modes are concurrent with those found using LR-TDDFT. Next, the complex dynamics of the superposition of magnon modes is studied, before finally studying the element-resolved modes in multisublattice magnetic systems.