Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Thinning efficacy of metamitron on young 'RoHo 3615' (Evelina®) apple

2020, Penzel, Martin, Kröling, Christian

To achieve a high quantity of premium class fruit, chemical thinning is an important component of crop load management in apples. For this purpose, the triazine-type photosynthetic inhibitor metamitron was registered for fruit thinning in Germany. Frequent studies demonstrated consistent thinning effects of metamitron on trees of different apple and pear cultivars. In the present study, the efficacy of metamitron applied at a low concentration (165 g ha−1) was investigated in 2016 and 2017 on young 'RoHo3615' apple trees, planted in 2014. The highest fruit set reduction was achieved when metamitron was applied twice. Single application, in contrast, led to variable results and pointed out the strong dependence of the thinning efficacy of metamitron on favourable weather conditions. Adding citric acid or the growth regulator prohexadione-Ca in combination with ammonium sulphate did not affect the thinning efficacy of metamitron. The fruit quality was high in any treatment and no effects of thinning treatment on fruit colouration or percentage of skin russeting were observed. Consequently, metamitron is an effective fruit thinning agent for young apple trees, which can be additionally used in combination with the mentioned substances, while maintaining a high fruit quality

Loading...
Thumbnail Image
Item

Validation study for measuring absorption and reduced scattering coefficients by means of laser-induced backscattering imaging

2019, Zude-Sasse, Manuela, Hashim, Norhashila, Hass, Roland, Polley, Nabarun, Regen, Christian

Decoupling of optical properties appears challenging, but vital to get better insight of the relationship between light and fruit attributes. In this study, nine solid phantoms capturing the ranges of absorption (μa) and reduced scattering (μs’) coefficients in fruit were analysed non-destructively using laser-induced backscattering imaging (LLBI) at 1060 nm. Data analysis of LLBI was carried out on the diffuse reflectance, attenuation profile obtained by means of Farrell's diffusion theory either calculating μa [cm−1] and μs’ [cm−1] in one fitting step or fitting only one optical variable and providing the other one from a destructive analysis. The nondestructive approach was approved when calculating one unknown coefficient non-destructively, while no ability of the method was found to analysis both, μa and μs’, non-destructively. Setting μs’ according to destructive photon density wave (PDW) spectroscopy and fitting μa resulted in root mean square error (rmse) of 18.7% in comparison to fitting μs’ resulting in rmse of 2.6%, pointing to decreased measuring uncertainty, when the highly variable μa was known. The approach was tested on European pear, utilizing destructive PDW spectroscopy for setting one variable, while LLBI was applied for calculating the remaining coefficient. Results indicated that the optical properties of pear obtained from PDW spectroscopy as well as LLBI changed concurrently in correspondence to water content mainly. A destructive batch-wise analysis of μs’ and online analysis of μa may be considered in future developments for improved fruit sorting results, when considering fruit with high variability of μs’. © 2019 The Authors