Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Managing power demand from air conditioning benefits solar pv in India scenarios for 2040

2020, Ershad, Ahmad Murtaza, Pietzcker, Robert, Ueckerdt, Falko, Luderer, Gunnar

An Indian electricity system with very high shares of solar photovoltaics seems to be a plausible future given the ever-falling solar photovoltaic (PV) costs, recent Indian auction prices, and governmental support schemes. However, the variability of solar PV electricity, i.e., the seasonal, daily, and other weather-induced variations, could create an economic barrier. In this paper, we analyzed a strategy to overcome this barrier with demand-side management (DSM) by lending flexibility to the rapidly increasing electricity demand for air conditioning through either precooling or chilled water storage. With an open-source power sector model, we estimated the endogenous investments into and the hourly dispatching of these demand-side options for a broad range of potential PV shares in the Indian power system in 2040. We found that both options reduce the challenges of variability by shifting electricity demand from the evening peak to midday, thereby reducing the temporal mismatch of demand and solar PV supply profiles. This increases the economic value of solar PV, especially at shares above 40%, the level at which the economic value roughly doubles through demand flexibility. Consequently, DSM increases the competitive and cost-optimal solar PV generation share from 33-45% (without DSM) to ∼45-60% (with DSM). These insights are transferable to most countries with high solar irradiation in warm climate zones, which amounts to a major share of future electricity demand. This suggests that technologies, which give flexibility to air conditioning demand, can be an important contribution toward enabling a solar-centered global electricity supply. © 2020 by the authors.

Loading...
Thumbnail Image
Item

Measuring and monitoring urban impacts on climate change from space

2020, Milesi, Cristina, Churkina, Galina

As urban areas continue to expand and play a critical role as both contributors to climate change and hotspots of vulnerability to its effects, cities have become battlegrounds for climate change adaptation and mitigation. Large amounts of earth observations from space have been collected over the last five decades and while most of the measurements have not been designed specifically for monitoring urban areas, an increasing number of these observations is being used for understanding the growth rates of cities and their environmental impacts. Here we reviewed the existing tools available from satellite remote sensing to study urban contribution to climate change, which could be used for monitoring the progress of climate change mitigation strategies at the city level. We described earth observations that are suitable for measuring and monitoring urban population, extent, and structure; urban emissions of greenhouse gases and other air pollutants; urban energy consumption; and extent, intensity, and effects on surrounding regions, including nearby water bodies, of urban heat islands. We compared the observations available and obtainable from space with the measurements desirable for monitoring. Despite considerable progress in monitoring urban extent, structure, heat island intensity, and air pollution from space, many limitations and uncertainties still need to be resolved. We emphasize that some important variables, such as population density and urban energy consumption, cannot be suitably measured from space with available observations.

Loading...
Thumbnail Image
Item

Recurrence Analysis of Vegetation Indices for Highlighting the Ecosystem Response to Drought Events: An Application to the Amazon Forest

2020, Semeraro, Teodoro, Luvisi, Andrea, Lillo, Antonio O., Aretano, Roberta, Buccolieri, Riccardo, Marwan, Norbert

Forests are important in sequestering CO2 and therefore play a significant role in climate change. However, the CO2 cycle is conditioned by drought events that alter the rate of photosynthesis, which is the principal physiological action of plants in transforming CO2 into biological energy. This study applied recurrence quantification analysis (RQA) to describe the evolution of photosynthesis-related indices to highlight disturbance alterations produced by the Atlantic Multidecadal Oscillation (AMO, years 2005 and 2010) and the El Niño-Southern Oscillation (ENSO, year 2015) in the Amazon forest. The analysis was carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) images to build time series of the enhanced vegetation index (EVI), the normalized difference water index (NDWI), and the land surface temperature (LST) covering the period 2001–2018. The results did not show significant variations produced by AMO throughout the study area, while a disruption due to the global warming phase linked to the extreme ENSO event occurred, and the forest was able to recover. In addition, spatial differences in the response of the forest to the ENSO event were found. These findings show that the application of RQA to the time series of vegetation indices supports the evaluation of the forest ecosystem response to disruptive events. This approach provides information on the capacity of the forest to recover after a disruptive event and, therefore is useful to estimate the resilience of this particular ecosystem.

Loading...
Thumbnail Image
Item

Implications of Winter NAO Flavors on Present and Future European Climate

2019, Rousi, Efi, Rust, Henning W., Ulbrich, Uwe, Anagnostopoulou, Christina

The North Atlantic Oscillation (NAO), a basic variability mode in the Northern Hemisphere, undergoes changes in its temporal and spatial characteristics, with significant implications on European climate. In this paper, different NAO flavors are distinguished for winter in simulations of a Coupled Atmosphere-Ocean GCM, using Self-Organizing Maps, a topology preserving clustering algorithm. These flavors refer to various sub-forms of the NAO pattern, reflecting the range of positions occupied by its action centers, the Icelandic Low and the Azores High. After having defined the NAO flavors, composites of winter temperature and precipitation over Europe are created for each one of them. The results reveal significant differences between NAO flavors in terms of their effects on the European climate. Generally, the eastwardly shifted NAO patterns induce a stronger than average influence on European temperatures. In contrast, the effects of NAO flavors on European precipitation anomalies are less coherent, with various areas responding differently. These results confirm that not only the temporal, but also the spatial variability of NAO is important in regulating European climate. © 2020 by the authors.

Loading...
Thumbnail Image
Item

Multi-temporal analysis of forest fire probability using socio-economic and environmental variables

2019, Kim, Sea Jin, Lim, Chul-Hee, Kim, Gang Sun, Lee, Jongyeol, Geiger, Tobias, Rahmati, Omid, Son, Yowhan, Lee, Woo-Kyun

As most of the forest fires in South Korea are related to human activity, socio-economic factors are critical in estimating their probability. To estimate and analyze how human activity is influencing forest fire probability, this study considered not only environmental factors such as precipitation, elevation, topographic wetness index, and forest type, but also socio-economic factors such as population density and distance from urban area. The machine learning Maximum Entropy (Maxent) and Random Forest models were used to predict and analyze the spatial distribution of forest fire probability in South Korea. The model performance was evaluated using the receiver operating characteristic (ROC) curve method, and models’ outputs were compared based on the area under the ROC curve (AUC). In addition, a multi-temporal analysis was conducted to determine the relationships between forest fire probability and socio-economic or environmental changes from the 1980s to the 2000s. The analysis revealed that the spatial distribution was concentrated in or around cities, and the probability had a strong correlation with variables related to human activity and accessibility over the decades. The AUC values for validation were higher in the Random Forest result compared to the Maxent result throughout the decades. Our findings can be useful for developing preventive measures for forest fire risk reduction considering socio-economic development and environmental conditions.

Loading...
Thumbnail Image
Item

Impacts of Climate Change on theWater Resources of the Kunduz River Basin, Afghanistan

2020, Akhundzadah, Noor Ahmad, Soltani, Salim, Aich, Valentin

The Kunduz River is one of the main tributaries of the Amu Darya Basin in North Afghanistan. Many communities live in the Kunduz River Basin (KRB), and its water resources have been the basis of their livelihoods for many generations. This study investigates climate change impacts on the KRB catchment. Rare station data are, for the first time, used to analyze systematic trends in temperature, precipitation, and river discharge over the past few decades, while using Mann-Kendall and Theil-Sen trend statistics. The trends show that the hydrology of the basin changed significantly over the last decades. A comparison of landcover data of the river basin from 1992 and 2019 shows significant changes that have additional impact on the basin hydrology, which are used to interpret the trend analysis. There is considerable uncertainty due to the data scarcity and gaps in the data, but all results indicate a strong tendency towards drier conditions. An extreme warming trend, partly above 2 °C since the 1960s in combination with a dramatic precipitation decrease by more than -30% lead to a strong decrease in river discharge. The increasing glacier melt compensates the decreases and leads to an increase in runoff only in the highland parts of the upper catchment. The reduction of water availability and the additional stress on the land leads to a strong increase of barren land and a reduction of vegetation cover. The detected trends and changes in the basin hydrology demand an active management of the already scarce water resources in order to sustain water supply for agriculture and ecosystems in the KRB. © 2020 by the authors.

Loading...
Thumbnail Image
Item

Estimation of hourly near surface air temperature across Israel using an ensemble model

2020, Zhou, Bin, Erell, Evyatar, Hough, Ian, Shtein, Alexandra, Just, Allan C., Novack, Victor, Rosenblatt, Jonathan, Kloog, Itai

Mapping of near-surface air temperature (Ta) at high spatio-temporal resolution is essential for unbiased assessment of human health exposure to temperature extremes, not least given the observed trend of urbanization and global climate change. Data constraints have led previous studies to focus merely on daily Ta metrics, rather than hourly ones, making them insufficient for intra-day assessment of health exposure. In this study, we present a three-stage machine learning-based ensemble model to estimate hourly Ta at a high spatial resolution of 1 × 1 km2, incorporating remotely sensed surface skin temperature (Ts) from geostationary satellites, reanalysis synoptic variables, and observations from weather stations, as well as auxiliary geospatial variables, which account for spatio-temporal variability of Ta. The Stage 1 model gap-fills hourly Ts at 4 × 4 km2 from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), which are subsequently fed into the Stage 2 model to estimate hourly Ta at the same spatio-temporal resolution. The Stage 3 model downscales the residuals between estimated and measured Ta to a grid of 1 × 1 km2, taking into account additionally the monthly diurnal pattern of Ts derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. In each stage, the ensemble model synergizes estimates from the constituent base learners—random forest (RF) and extreme gradient boosting (XGBoost)—by applying a geographically weighted generalized additive model (GAM), which allows the weights of results from individual models to vary over space and time. Demonstrated for Israel for the period 2004–2017, the proposed ensemble model outperformed each of the two base learners. It also attained excellent five-fold cross-validated performance, with overall root mean square error (RMSE) of 0.8 and 0.9 °C, mean absolute error (MAE) of 0.6 and 0.7 °C, and R2 of 0.95 and 0.98 in Stage 1 and Stage 2, respectively. The Stage 3 model for downscaling Ta residuals to 1 km MODIS grids achieved overall RMSE of 0.3 °C, MAE of 0.5 °C, and R2 of 0.63. The generated hourly 1 × 1 km2 Ta thus serves as a foundation for monitoring and assessing human health exposure to temperature extremes at a larger geographical scale, helping to further minimize exposure misclassification in epidemiological studies.