Search Results

Now showing 1 - 10 of 33
  • Item
    Rapid isolation and identification of pneumonia associated pathogens from sputum samples combining an innovative sample preparation strategy and array-based detection
    (Washington : American Chemical Society, 2019) Pahlow, Susanne; Lehniger, Lydia; Hentschel, Stefanie; Seise, Barbara; Braun, Sascha D.; Ehricht, Ralf; Berg, Albrecht; Popp, Jürgen; Weber, Karina
    With this study, an innovative and convenient enrichment and detection strategy for eight clinically relevant pneumonia pathogens, namely, Acinetobacter baumannii, Escherichia coli, Haemophilus influenzae, Klebsiella pneumoniae, Moraxella catarrhalis, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae is introduced. Bacteria were isolated from sputum samples with amine-modified particles exploiting pH-dependent electrostatic interactions between bacteria and the functionalized particle surface. Following this, an asymmetric polymerase chain reaction as well as subsequent stringent array-based hybridization with specific complementary capture probes were performed. Finally, results were visualized by an enzyme-induced silver nanoparticle deposition, providing stable endpoint signals and consequently an easy detection possibility. The assay was optimized using spiked samples of artificial sputum with different strains of the abovementioned bacterial species. Furthermore, actual patient sputum samples with S. pneumoniae were successfully analyzed. The presented approach offers great potential for the urgent need of a fast, specific, and reliable isolation and identification platform for important pneumonia pathogens, covering the complete process chain from sample preparation up to array-based detection within only 4 h.With this study, an innovative and convenient enrichment and detection strategy for eight clinically relevant pneumonia pathogens, namely, Acinetobacter baumannii, Escherichia coli, Haemophilus influenzae, Klebsiella pneumoniae, Moraxella catarrhalis, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae is introduced. Bacteria were isolated from sputum samples with amine-modified particles exploiting pH-dependent electrostatic interactions between bacteria and the functionalized particle surface. Following this, an asymmetric polymerase chain reaction as well as subsequent stringent array-based hybridization with specific complementary capture probes were performed. Finally, results were visualized by an enzyme-induced silver nanoparticle deposition, providing stable endpoint signals and consequently an easy detection possibility. The assay was optimized using spiked samples of artificial sputum with different strains of the abovementioned bacterial species. Furthermore, actual patient sputum samples with S. pneumoniae were successfully analyzed. The presented approach offers great potential for the urgent need of a fast, specific, and reliable isolation and identification platform for important pneumonia pathogens, covering the complete process chain from sample preparation up to array-based detection within only 4 h.
  • Item
    Stress-Induced 3D Chiral Fractal Metasurface for Enhanced and Stabilized Broadband Near-Field Optical Chirality
    (Weinheim : Wiley-VCH Verlag, 2019) Tseng M.L.; Lin Z.-H.; Kuo H.Y.; Huang T.-T.; Huang Y.-T.; Chung T.L.; Chu C.H.; Huang J.-S.; Tsai D.P.
    Metasurfaces comprising 3D chiral structures have shown great potential in chiroptical applications such as chiral optical components and sensing. So far, the main challenges lie in the nanofabrication and the limited operational bandwidth. Homogeneous and localized broadband near-field optical chirality enhancement has not been achieved. Here, an effective nanofabrication method to create a 3D chiral metasurface with far- and near-field broadband chiroptical properties is demonstrated. A focused ion beam is used to cut and stretch nanowires into 3D Archimedean spirals from stacked films. The 3D Archimedean spiral is a self-similar chiral fractal structure sensitive to the chirality of light. The spiral exhibits far- and near-field broadband chiroptical responses from 2 to 8 µm. With circularly polarized light (CPL), the spiral shows superior far-field transmission dissymmetry and handedness-dependent near-field localization. With linearly polarized excitation, homogeneous and highly enhanced broadband near-field optical chirality is generated at a stably localized position inside the spiral. The effective yet straightforward fabrication strategy allows easy fabrication of 3D chiral structures with superior broadband far-field chiroptical response as well as strongly enhanced and stably localized broadband near-field optical chirality. The reported method and chiral metasurface may find applications in broadband chiral optics and chiral sensing. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Resonance Raman Spectro-Electrochemistry to Illuminate Photo-Induced Molecular Reaction Pathways
    (Basel : MDPI, 2019) Zedler, Linda; Krieck, Sven; Kupfer, Stephan; Dietzek, Benjamin
    Electron transfer reactions play a key role for artificial solar energy conversion, however, the underlying reaction mechanisms and the interplay with the molecular structure are still poorly understood due to the complexity of the reaction pathways and ultrafast timescales. In order to investigate such light-induced reaction pathways, a new spectroscopic tool has been applied, which combines UV-vis and resonance Raman spectroscopy at multiple excitation wavelengths with electrochemistry in a thin-layer electrochemical cell to study [RuII(tbtpy)2]2+ (tbtpy = tri-tert-butyl-2,2′:6′,2′′-terpyridine) as a model compound for the photo-activated electron donor in structurally related molecular and supramolecular assemblies. The new spectroscopic method substantiates previous suggestions regarding the reduction mechanism of this complex by localizing photo-electrons and identifying structural changes of metastable intermediates along the reaction cascade. This has been realized by monitoring selective enhancement of Raman-active vibrations associated with structural changes upon electronic absorption when tuning the excitation wavelength into new UV-vis absorption bands of intermediate structures. Additional interpretation of shifts in Raman band positions upon reduction with the help of quantum chemical calculations provides a consistent picture of the sequential reduction of the individual terpyridine ligands, i.e., the first reduction results in the monocation [(tbtpy)Ru(tbtpy•)]+, while the second reduction generates [(tbtpy•)Ru(tbtpy•)]0 of triplet multiplicity. Therefore, the combination of this versatile spectro-electrochemical tool allows us to deepen the fundamental understanding of light-induced charge transfer processes in more relevant and complex systems.
  • Item
    Counterfeit and substandard test of the antimalarial tablet Riamet® by means of Raman hyperspectral multicomponent analysis
    (Basel : MDPI, 2019) Frosch, Timea; Wyrwich, Elisabeth; Yan, Di; Domes, Christian; Domes, Robert; Popp, Jürgen; Frosch, Torsten
    The fight against counterfeit pharmaceuticals is a global issue of utmost importance, as failed medication results in millions of deaths every year. Particularly affected are antimalarial tablets. A very important issue is the identification of substandard tablets that do not contain the nominal amounts of the active pharmaceutical ingredient (API), and the differentiation between genuine products and products without any active ingredient or with a false active ingredient. This work presents a novel approach based on fiber-array based Raman hyperspectral imaging to qualify and quantify the antimalarial APIs lumefantrine and artemether directly and non-invasively in a tablet in a time-efficient way. The investigations were carried out with the antimalarial tablet Riamet® and self-made model tablets, which were used as examples of counterfeits and substandard. Partial least-squares regression modeling and density functional theory calculations were carried out for quantification of lumefantrine and artemether and for spectral band assignment. The most prominent differentiating vibrational signatures of the APIs were presented.
  • Item
    Fiber-array-based Raman hyperspectral imaging for simultaneous chemical selective monitoring of particle size and shape of active ingredients in analgesic tablets
    (Basel : MDPI, 2019) Frosch, Timea; Wyrwich, Elisabeth; Yan, Di; Popp, Jürgen; Frosch, Torsten
    The particle shape, size and distribution of active pharmaceutical ingredients (API) are relevant quality indicators of pharmaceutical tablets due to their high impact on the manufacturing process. Furthermore, the bioavailability of the APIs from the dosage form depends largely on these characteristics. Routinely, particle size and shape are only analyzed in the powder form, without regard to the effect of the formulation procedure on the particle characteristics. The monitoring of these parameters improves the understanding of the process; therefore, higher quality and better control over the biopharmaceutical profile can be ensured. A new fiber-array-based Raman hyperspectral imaging technique is presented for direct simultaneous in-situ monitoring of three different active pharmaceutical ingredients- acetylsalicylic acid, acetaminophen and caffeine- in analgesic tablets. This novel method enables a chemically selective, noninvasive assessment of the distribution of the active ingredients down to 1 µm spatial resolution. The occurrence of spherical and needle-like particles, as well as agglomerations and the respective particle size ranges, were rapidly determined for two commercially available analgesic tablet types. Subtle differences were observed in comparison between these two tablets. Higher amounts of acetaminophen were visible, more needle-shaped and bigger acetylsalicylic acid particles, and a higher incidence of bigger agglomerations were found in one of the analgesic tablets.
  • Item
    Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction
    (Berlin : Nature Publishing, 2019) Markwirth, A; Lachetta, Mario; Mönkemöller, V.; Heintzmann, Rainer; Hübner, Wolfgang; Huser, Thomas; Müller, Marcel
    Super-resolved structured illumination microscopy (SR-SIM) is among the fastest fluorescence microscopy techniques capable of surpassing the optical diffraction limit. Current custom-build instruments are able to deliver two-fold resolution enhancement with high acquisition speed. SR-SIM is usually a two-step process, with raw-data acquisition and subsequent, time-consuming post-processing for image reconstruction. In contrast, wide-field and (multi-spot) confocal techniques produce high-resolution images instantly. Such immediacy is also possible with SR-SIM, by tight integration of a video-rate capable SIM with fast reconstruction software. Here we present instant SR-SIM by VIGOR (Video-rate Immediate GPU-accelerated Open-Source Reconstruction). We demonstrate multi-color SR-SIM at video frame-rates, with less than 250 ms delay between measurement and reconstructed image display. This is achieved by modifying and extending high-speed SR-SIM image acquisition with a new, GPU-enhanced, network-enabled image-reconstruction software. We demonstrate high-speed surveying of biological samples in multiple colors and live imaging of moving mitochondria as an example of intracellular dynamics.
  • Item
    Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on Raman spectroscopy
    (Berlin : de Gruyter, 2019) Frosch, Timea; Knebl, Andreas; Frosch, Torsten
    Innovations in Raman spectroscopic techniques provide a potential solution to current problems in pharmaceutical drug monitoring. This review aims to summarize the recent advances in the field. The developments of novel plasmonic nanoparticles continuously push the limits of Raman spectroscopic detection. In surface-enhanced Raman spectroscopy (SERS), these particles are used for the strong local enhancement of Raman signals from pharmaceutical drugs. SERS is increasingly applied for forensic trace detection and for therapeutic drug monitoring. In combination with spatially offset Raman spectroscopy, further application fields could be addressed, e.g. in situ pharmaceutical quality testing through the packaging. Raman optical activity, which enables the thorough analysis of specific chiral properties of drugs, can also be combined with SERS for signal enhancement. Besides SERS, micro- and nano-structured optical hollow fibers enable a versatile approach for Raman signal enhancement of pharmaceuticals. Within the fiber, the volume of interaction between drug molecules and laser light is increased compared with conventional methods. Advances in fiber-enhanced Raman spectroscopy point at the high potential for continuous online drug monitoring in clinical therapeutic diagnosis. Furthermore, fiber-array based non-invasive Raman spectroscopic chemical imaging of tablets might find application in the detection of substandard and counterfeit drugs. The discussed techniques are promising and might soon find widespread application for the detection and monitoring of drugs in various fields.
  • Item
    Molecular Specific and Sensitive Detection of Pyrazinamide and Its Metabolite Pyrazinoic Acid by Means of Surface Enhanced Raman Spectroscopy Employing In Situ Prepared Colloids
    (Basel : MDPI, 2019) Mühlig, Anna; Jahn, Izabella-Jolan; Heidler, Jan; Weber, Karina; Jahn, Martin; Sheen, Patricia; Zimic, Mirko; Cialla-May, Dana; Popp, Jürgen
    The prodrug pyrazinamide (PZA) is metabolized by the mycobacteria to pyrazinoic acid (POA), which is expelled into the extracellular environment. PZA resistance is highly associated to a lack of POA efflux. Thus, by detecting a reduction of the concentration of POA in the extracellular environment, by means of lab-on-a-chip (LoC)-SERS (surface-enhanced Raman spectroscopy), an alternative approach for the discrimination of PZA resistant mycobacteria is introduced. A droplet-based microfluidic SERS device has been employed to illustrate the potential of the LoC-SERS method for the discrimination of PZA resistant mycobacteria. The two analytes were detected discretely in aqueous solution with a limit of detection of 27 µm for PZA and 21 µm for POA. The simultaneous detection of PZA and POA in aqueous mixtures could be realized within a concentration range from 20 μm to 50 μm for PZA and from 50 μm to 80 μm for POA.
  • Item
    Fluoride-Sulfophosphate/Silica Hybrid Fiber as a Platform for Optically Active Materials
    (Lausanne : Frontiers Media, 2019) Wang, Wei-Chao; Yang, Xu; Wieduwilt, Torsten; Schmidt, Markus A.; Zhang, Qin-Yuan; Wondraczek, Lothar
    Pressure-assisted melt filling (PAMF) of pre-fabricated micro-capillaries has been proven an effective way of fabricating hybrid optical fiber (HOF) from unusual combinations of materials. Here, we extend the applicability of PAMF to multi-anionic fluoride-sulfophosphate (FPS) glasses. FPS glasses provide extended transmission windows and high solubility for various transition metal (TM) and rare earth (RE) ion species. Using PAMF for fabricating FPS/silica HOFs can therefore act as a platform for a broad variety of optically active fiber devices. For the present demonstration purposes, we selected Cr3+- and Mn2+-doped FPS. For both glasses, we demonstrate how the spectral characteristics of the bulk material persist also in the HOF. Using a double-core fiber structure in which waveguiding is conducted in a primary GeO2-SiO2 core, mode coupling to the secondary FPS-filled core allows one to exploit the optical activity of the doped FPS glass even when the intrinsic optical loss is high.Pressure-assisted melt filling (PAMF) of pre-fabricated micro-capillaries has been proven an effective way of fabricating hybrid optical fiber (HOF) from unusual combinations of materials. Here, we extend the applicability of PAMF to multi-anionic fluoride-sulfophosphate (FPS) glasses. FPS glasses provide extended transmission windows and high solubility for various transition metal (TM) and rare earth (RE) ion species. Using PAMF for fabricating FPS/silica HOFs can therefore act as a platform for a broad variety of optically active fiber devices. For the present demonstration purposes, we selected Cr3+- and Mn2+-doped FPS. For both glasses, we demonstrate how the spectral characteristics of the bulk material persist also in the HOF. Using a double-core fiber structure in which waveguiding is conducted in a primary GeO2-SiO2 core, mode coupling to the secondary FPS-filled core allows one to exploit the optical activity of the doped FPS glass even when the intrinsic optical loss is high.
  • Item
    Absolute Absorption Measurements in Optical Coatings by Laser Induced Deflection
    (Basel : MDPI, 2019) Bublitz, Simon; Mühlig, Christian
    Absolute measurement of residual absorption in optical coatings is steadily becoming more important in thin film characterization, in particular with respect to high power laser applications. A summary is given on the current ability of the laser induced deflection (LID) technique to serve sensitive photo-thermal absorption measurements combined with reliable absolute calibration based on an electrical heater approach. To account for different measurement requirements, several concepts have been derived to accordingly adapt the original LID concept. Experimental results are presented for prominent UV and deep UV laser wavelengths, covering a variety of factors that critically can influence the absorption properties in optical coatings e.g., deposition process, defects and impurities, intense laser irradiation and surface/interface engineering. The experimental findings demonstrate that by combining high sensitivity with absolute calibration, photo-thermal absorption measurements are able to be a valuable supplement for the characterization of optical thin films and coatings.