Search Results

Now showing 1 - 2 of 2
  • Item
    Radiofrequency Hyperthermia of Cancer Cells Enhanced by Silicic Acid Ions Released during the Biodegradation of Porous Silicon Nanowires
    (Washington, DC : ACS Publications, 2019) Gongalsky, Maxim; Gvindzhiliia, Georgii; Tamarov, Konstantin; Shalygina, Olga; Pavlikov, Alexander; Solovyev, Valery; Kudryavtsev, Andrey; Sivakov, Vladimir; Osminkina, Liubov A.
    The radiofrequency (RF) mild hyperthermia effect sensitized by biodegradable nanoparticles is a promising approach for therapy and diagnostics of numerous human diseases including cancer. Herein, we report the significant enhancement of local destruction of cancer cells induced by RF hyperthermia in the presence of degraded low-toxic porous silicon (PSi) nanowires (NWs). Proper selection of RF irradiation time (10 min), intensity, concentration of PSi NWs, and incubation time (24 h) decreased cell viability to 10%, which can be potentially used for cancer treatment. The incubation for 24 h is critical for degradation of PSi NWs and the formation of silicic acid ions H+ and H3SiO4- in abundance. The ions drastically change the solution conductivity in the vicinity of PSi NWs, which enhances the absorption of RF radiation and increases the hyperthermia effect. The high biodegradability and efficient photoluminescence of PSi NWs were governed by their mesoporous structure. The average size of pores was 10 nm, and the sizes of silicon nanocrystals (quantum dots) were 3-5 nm. Degradation of PSi NWs was observed as a significant decrease of optical absorbance, photoluminescence, and Raman signals of PSi NW suspensions after 24 h of incubation. Localization of PSi NWs at cell membranes revealed by confocal microscopy suggested that thermal poration of membranes could cause cell death. Thus, efficient photoluminescence in combination with RF-induced cell membrane breakdown indicates promising opportunities for theranostic applications of PSi NWs. © 2019 American Chemical Society.
  • Item
    Synthesis of Poly(N-vinylcaprolactam)-Based Microgels by Precipitation Polymerization: Pseudo-Bulk Model for Particle Growth and Size Distribution
    (Washington, DC : ACS Publications, 2019) Janssen, Franca A.L.; Kather, Michael; Ksiazkiewicz, Agnieszka; Pich, Andrij; Mitsos, Alexander
    Particle size distribution and in particular the mean particle size are key properties of microgels, which are determined by synthesis conditions. To describe particle growth and particle size distribution over the progress of synthesis of poly(N-vinylcaprolactam)-based microgels, a pseudo-bulk model for precipitation copolymerization with cross-linking is formulated. The model is fitted and compared to experimental data from reaction calorimetry and dynamic light scattering, showing good agreement with polymerization progress, final particle size, and narrow particle size distribution. Predictions of particle growth and reaction progress for different experimental setups are compared to the corresponding experimental data, demonstrating the predictive capability and limitations of the model. The comparison to reaction calorimetry measurements shows the strength in the prediction of the overall polymerization progress. The results for the prediction of the particle radii reveal significant deviations and highlight the demand for further investigation, including additional data. Copyright © 2019 American Chemical Society.