Search Results

Now showing 1 - 3 of 3
  • Item
    Substrate-orientation dependence of β -Ga2O3 (100), (010), (001), and (2 ̄ 01) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE)
    (Melville, NY : AIP Publ., 2020) Mazzolini, P.; Falkenstein, A.; Wouters, C.; Schewski, R.; Markurt, T.; Galazka, Z.; Martin, M.; Albrecht, M.; Bierwagen, O.
    We experimentally demonstrate how In-mediated metal-exchange catalysis (MEXCAT) allows us to widen the deposition window for β-Ga2O3 homoepitaxy to conditions otherwise prohibitive for its growth via molecular beam epitaxy (e.g., substrate temperatures ≥800 °C) on the major substrate orientations, i.e., (010), (001), (2⎯⎯01), and (100) 6°-offcut. The obtained crystalline qualities, surface roughnesses, growth rates, and In-incorporation profiles are shown and compared with different experimental techniques. The growth rates, Γ, for fixed growth conditions are monotonously increasing with the surface free energy of the different orientations with the following order: Γ(010) > Γ(001) > Γ(2⎯⎯01) > Γ(100). Ga2O3 surfaces with higher surface free energy provide stronger bonds to the surface ad-atoms or ad-molecules, resulting in decreasing desorption, i.e., a higher incorporation/growth rate. The structural quality in the case of (2⎯⎯01), however, is compromised by twin domains due to the crystallography of this orientation. Notably, our study highlights β-Ga2O3 layers with high structural quality grown by MEXCAT-MBE not only in the most investigated (010) orientation but also in the (100) and (001) ones. In particular, MEXCAT on the (001) orientation results in both growth rate and structural quality comparable to the ones achievable with (010), and the limited incorporation of In associated with the MEXCAT deposition process does not change the insulating characteristics of unintentionally doped layers. The (001) surface is therefore suggested as a valuable alternative orientation for devices.
  • Item
    Efficient suboxide sources in oxide molecular beam epitaxy using mixed metal + oxide charges: The examples of SnO and Ga2O
    (Melville, NY : AIP Publ., 2020) Hoffmann, Georg; Budde, Melanie; Mazzolini, Piero; Bierwagend, Oliver
    Sources of suboxides, providing several advantages over metal sources for the molecular beam epitaxy (MBE) of oxides, are conventionally realized by decomposing the corresponding oxide charge at extreme temperatures. By quadrupole mass spectrometry of the direct flux from an effusion cell, we compare this conventional approach to the reaction of a mixed oxide + metal charge as a source for suboxides with the examples of SnO2 + Sn → 2 SnO and Ga2O3 + 4 Ga → 3 Ga2O. The high decomposition temperatures of the pure oxide charge were found to produce a high parasitic oxygen background. In contrast, the mixed charges reacted at significantly lower temperatures, providing high suboxide fluxes without additional parasitic oxygen. For the SnO source, we found a significant fraction of Sn2O2 in the flux from the mixed charge that was basically absent in the flux from the pure oxide charge. We demonstrate the plasma-assisted MBE growth of SnO2 using the mixed Sn + SnO2 charge to require less activated oxygen and a significantly lower source temperature than the corresponding growth from a pure Sn charge. Thus, the sublimation of mixed metal + oxide charges provides an efficient suboxide source for the growth of oxides by MBE. Thermodynamic calculations predict this advantage for further oxides as well, e.g., SiO2, GeO2, Al2O3, In2O3, La2O3, and Pr2O3 © 2020 Author(s).
  • Item
    Strategies for Analyzing Noncommon-Atom Heterovalent Interfaces: The Case of CdTe-on-InSb
    (Weinheim : Wiley-VCH, 2019) Luna, Esperanza; Trampert, Achim; Lu, Jing; Aoki, Toshihiro; Zhang, Yong-Hang; McCartney, Martha R.; Smith, David J.
    Semiconductor heterostructures are intrinsic to a wide range of modern-day electronic devices, such as computers, light-emitting devices, and photodetectors. Knowledge of chemical interfacial profiles in these structures is critical to the task of optimizing the device performance. This work presents an analysis of the composition profile and strain across the noncommon-atom heterovalent CdTe/InSb interface, carried out using a combination of electron microscopy imaging techniques. Because of the close atomic numbers of the constituent elements, techniques such as high-angle annular-dark-field and large-angle bright-field scanning transmission electron microscopy, as well as electron energy-loss spectroscopy, give results from the interface region that are inherently difficult to interpret. By contrast, use of the 002 dark-field imaging technique emphasizes the interface location by comparing differences in structure factors between the two materials. Comparisons of experimental and simulated CdTe-on-InSb profiles reveal that the interface is structurally abrupt to within about 1.5 nm (10–90% criterion), while geometric phase analysis based on aberration-corrected electron microscopy images reveals a minimal level of interfacial strain. The present investigation opens new routes to the systematic investigation of heterovalent interfaces, formed by the combination of other valence-mismatched material systems. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim