Search Results

Now showing 1 - 2 of 2
  • Item
    Segregated Network Polymer Composites with High Electrical Conductivity and Well Mechanical Properties based on PVC, P(VDFTFE), UHMWPE, and rGO
    (Washington, DC : ACS Publications, 2020) Shiyanova, Kseniya A.; Gudkov, Maksim V.; Gorenberg, Arkady Ya; Rabchinskii, Maxim K.; Smirnov, Dmitry A.; Shapetina, Maria A.; Gurinovich, Tatiana D.; Goncharuk, Galina P.; Kirilenko, Demid A.; Bazhenov, Sergey L.; Melnikov, Valery P.
    The formation of a segregated network structure (wittingly uneven distribution of a filler) is one of the most promising strategies for the fabrication of electrically conductive polymer composites at present. However, the simultaneous achievement of high values of electrical conductivity with the retention of well mechanical properties within this approach remains a great challenge. Here, by means of X-ray photoelectron spectra (XPS), near-edge X-ray absorption fine structure (NEXAFS) spectra, scanning electron microscopy (SEM), dielectric spectroscopy, and compression engineering stress-strain curve analysis, we have studied the effect of a segregated network structure on the electrical conductivity and mechanical properties of a set of polymer composites. The composites were prepared by applying graphene oxide (GO) with ultralarge basal plane size (up to 150 μm) onto the surface of polymer powder particles, namely, poly(vinyl chloride) (PVC), poly(vinylidene fluoride-co-tetrafluoroethylene) (P(VDF-TFE)), and ultrahigh-molecular-weight poly(ethylene) (UHMWPE) with the subsequent GO reduction and composite hot pressing. A strong dependence of the segregated network polymer composites' physical properties on the polymer matrix was demonstrated. Particularly, 12 orders of magnitude rise of the polymers' electrical conductivity up to 0.7 S/m was found upon the incorporation of the reduced GO (rGO). A 17% increase in the P(VDF-TFE) elastic modulus filled by 1 wt % of rGO was observed. Fracture strength of PVC/rGO at 0.5 wt % content of the filler was demonstrated to decrease by fourfold. At the same time, the change in strength was not significant for P(VDF-TFE) and UHMWPE composites in comparison with pure polymers. Our results show a promise to accelerate the development of new composites for energy applications, such as metal-free supercapacitor plates and current collectors of lithium-ion batteries, bipolar plates of proton-exchange membrane fuel cells, antistatic elements of various electronic devices, etc. © 2020 American Chemical Society.
  • Item
    Comparison of novel semi-airborne electromagnetic data with multi-scale geophysical, petrophysical and geological data from Schleiz, Germany
    (Amsterdam [u.a.] : Elsevier Science, 2020) Steuer, Annika; Smirnova, Maria; Becken, Michael; Schiffler, Markus; Günther, Thomas; Rochlitz, Raphael; Yogeshwar, Pritam; Mörbe, Wiebke; Siemon, Bernhard; Costabel, Stephan; Preugschat, Benedikt; Ibs-von Seht, Malte; Zampa, Luigi Sante; Müller, Franz
    In the framework of the Deep Electromagnetic Sounding for Mineral EXploration (DESMEX) project, we carried out multiple geophysical surveys from regional to local scales in a former mining area in the state of Thuringia, Germany. We prove the applicability of newly developed semi-airborne electromagnetic (EM) systems for mineral exploration by cross-validating inversion results with those of established airborne and ground-based investigation techniques. In addition, supporting petrophysical and geological information to our geophysical measurements allowed the synthesis of all datasets over multiple scales. An initial regional-scale reconnaissance survey was performed with BGR's standard helicopter-borne geophysical system deployed with frequency-domain electromagnetic (HEM), magnetic and radiometric sensors. In addition to geological considerations, the HEM results served as base-line information for the selection of an optimal location for the intermediate-scale semi-airborne EM experiments. The semi-airborne surveys utilized long grounded transmitters and two independent airborne receiver instruments: induction coil magnetometers and SQUID sensors. Due to the limited investigation depth of the HEM method, local-scale electrical resistivity tomography (ERT) and long-offset transient electromagnetic (LOTEM) measurements were carried out on a reference profile, enabling the validation of inversion results at greater depths. The comparison of all inversion results provided a consistent overall resistivity distribution. It further confirmed that both semi-airborne receiver instruments achieve the bandwidth and sensitivity required for the investigation of the resistivity structure down to 1 km depth and therewith the detection of deeply seated earth resources. A 3D geological model, lithological and geophysical borehole logs as well as petrophysical investigations were integrated to interpret of the geophysical results. Distinct highly-conductive anomalies with resistivities of less than 10 Om were identified as alum shales over all scales. Apart from that, the petrophysical investigations exhibited that correlating geophysical and geological information using only one single parameter, such as the electrical resistivity, is hardly possible. Therefore, we developed a first approach based on clustering methods and self-organizing maps (SOMs) that allowed us to assign geological units at the surface to a given combination of geophysical and petrophysical parameters, obtained on different scales. © 2020 The Authors