Search Results

Now showing 1 - 10 of 113
Loading...
Thumbnail Image
Item

Synthesis and crystal structure of a one-dimensional chain-like strontium(II) coordination polymer built of N-methyldiethanolamine and isobutyrate ligands

2021, Seiss, Maximilian, Schmitz, Sebastian, Börner, Martin, Monakhov, Kirill Yu.

The one-dimensional coordination polymer (I) [Sr(ib)2 (H2mda)]n (Hib = isobutyric acid, C4H8O2, and H2mda = N-methyldiethanolamine, C5H13NO2), namely, catena-poly[[(N-methyldiethanolamine-k3O, N, O')strontium(II)]-di-μ2- isobutyrato-K3O, O':O;K3O:O, O'], was prepared by the one-pot aerobic reaction of [Zr6O4 (OH)4 (ib)12 (H2O)].3Hib with Sr(NO3)2 and H2mda in the presence of MnCl2 and Et3N in acetonitrile. The use of MnCl2 is key to the isolation of I as high-quality colorless crystals in good yield. The molecular solid-state structure of I was determined by single-crystal X-ray diffraction. Compound I crystallizes in the monoclinic space group P21/c and shows a one-dimensional polymeric chain structure. Each monomeric unit of this coordination polymer consists of a central SrII ion in the NO8 coordination environment of two deprotonated ib- ligands and one fully protonated H2mda ligand. The C and O atoms of the H2mda ligand were refined as disordered over two sets of sites with site occupancies of 0.619 (3) and 0.381 (3). Compound I shows thermal stability up to 130°C in air. © 2021 International Union of Crystallography. All rights reserved.

Loading...
Thumbnail Image
Item

Coordination chemistry and photoswitching of dinuclear macrocyclic cadmium-, nickel-, and zinc complexes containing azobenzene carboxylato co-ligands

2019, Klose, Jennifer, Severin, Tobias, Hahn, Peter, Jeremies, Alexander, Bergmann, Jens, Fuhrmann, Daniel, Griebel, Jan, Abel, Bernd, Kersting, Berthold

The synthesis of mixed-ligand complexes of the type [M2L(μ-L')]+, where L represents a 24-membered macrocyclic hexaaza-dithiophenolate ligand, L' is an azobenzene carboxylate co-ligand, and M = Cd(II), Ni(II) or Zn(II), is reported. A series of new complexes were synthesized, namely [M2L(μ-L')]+ (L' = azo-H, M = Cd (1), Ni (2); L' = azo-OH, M = Zn (3), Ni (4); L' = azo-NMe2, M = Zn (5), Cd (6), Ni (7); L' = azo-CO2Me, M = Cd (8), Ni (9)), and characterized by elemental analysis, electro-spray ionization mass spectrometry (ESIMS), IR, UV–vis and NMR spectroscopy (for diamagnetic Zn and Cd complexes) and X-ray single crystal structure analysis. The crystal structures of 3' and 5–8 display an isostructural series of compounds with bridging azobenzene carboxylates in the trans form. The paramagnetic Ni complexes 2, 4 and 7 reveal a weak ferromagnetic exchange interaction with magnetic exchange coupling constant values between 21 and 23 cm−1 (H = −2JS1S2). Irradiation of 1 with λ = 365 nm reveals a photoisomerization of the co-ligand from the trans to the cis form. © 2019 Klose et al.

Loading...
Thumbnail Image
Item

Long-Living Holes in Grey Anatase TiO2 Enable Noble-Metal-Free and Sacrificial-Agent-Free Water Splitting

2020, Liu, Ning, Mohajernia, Shiva, Nguyen, Nhat Truong, Hejazi, Seyedsina, Plass, Fabian, Kahnt, Axel, Yokosawa, Tadahiro, Osvet, Andres, Spiecker, Erdmann, Guldi, Dirk M., Schmuki, Patrik

Titanium dioxide has been the benchmark semiconductor in photocatalysis for more than 40 years. Full water splitting, that is, decomposing water into H2 and O2 in stoichiometric amounts and with an acceptable activity, still remains a challenge, even when TiO2-based photocatalysts are used in combination with noble-metal co-catalysts. The bottleneck of anatase-type TiO2 remains the water oxidation, that is, the hole transfer reaction from pristine anatase to the aqueous environment. In this work, we report that “grey” (defect engineered) anatase can provide a drastically enhanced lifetime of photogenerated holes, which, in turn, enables an efficient oxidation reaction of water to peroxide via a two-electron pathway. As a result, a Ni@grey anatase TiO2 catalyst can be constructed with an impressive performance in terms of photocatalytic splitting of neutral water into H2 and a stoichiometric amount of H2O2 without the need of any noble metals or sacrificial agents. The finding of long hole lifetimes in grey anatase opens up a wide spectrum of further photocatalytic applications of this material. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Mixed-ligand lanthanide complexes supported by ditopic bis(imino-methyl)-phenol/calix[4]arene macrocycles: synthesis, structures, and luminescence properties of [Ln2(L2)(MeOH)2] (Ln = La, Eu, Tb, Yb)

2020, Ullmann, Steve, Hahn, Peter, Mini, Parvathy, Tuck, Kellie L., Kahnt, Axel, Abel, Bernd, Gutierrez Suburu, Matias E., Strassert, Cristian A., Kersting, Berthold

The lanthanide binding ability of a macrocyclic ligand H6L2 comprising two bis(iminomethyl)phenol and two calix[4]arene units has been studied. H6L2 is a ditopic ligand which provides dinuclear neutral complexes of composition [Ln2(L2)(MeOH)2] (Ln = La (1), Eu (2), Tb (3), and Yb (4)) in very good yield. X-ray crystal structure analyses for 2 and 3 show that (L2)6- accommodates two seven coordinated lanthanide ions in a distorted monocapped trigonal prismatic/octahedral coordination environment. UV-vis spectroscopic titrations performed with La3+, Eu3+, Tb3+ and Yb3+ ions in mixed MeOH/CH2Cl2 solution (I = 0.01 M NBu4PF6) reveal that a 2 : 1 (metal : ligand) stoichiometry is present in solution, with log K11 and K21 values ranging from 5.25 to 6.64. The ratio α = K11/K21 of the stepwise formation constants for the mononuclear (L2 + M = ML2, log K11) and the dinuclear complexes (ML2 + M = M2L2, log K21) was found to be invariably smaller than unity indicating that the binding of the first Ln3+ ion augments the binding of the second Ln3+ ion. The present complexes are less luminescent than other seven-coordinated Eu and Tb complexes, which can be traced to vibrational relaxation of excited EuIII and TbIII states by the coligated MeOH and H2O molecules and/or low-lying ligand-to-metal charge-transfer (LMCT) states. © 2020 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

A Diverse View of Science to Catalyse Change

2020, Urbina-Blanco, César A., Jilani, Safia Z., Speight, Isaiah R., Bojdys, Michael J., Friščić, Tomislav, Stoddart, J. Fraser, Nelson, Toby L., Mack, James, Robinson, Renã A.S., Waddell, Emanuel A., Lutkenhaus, Jodie L., Godfrey, Murrell, Abboud, Martine I., Aderinto, Stephen O., Aderohunmu, Damilola, Bibič, Lučka, Borges, João, Dong, Vy M., Ferrins, Lori, Fung, Fun Man, John, Torsten, Lim, Felicia P.L., Masters, Sarah L., Mambwe, Dickson, Thordarson, Pall, Titirici, Maria-Magdalena, Tormet-González, Gabriela D., Unterlass, Miriam M., Wadle, Austin, Yam, Vivian W.-W., Yang, Ying-Wei

Valuing diversity leads to scientific excellence, the progress of science and most importantly, it is simply the right thing to do. We can value diversity not only in words, but also in actions. From the structure of DNA,1 to computer science,2 and space-station batteries,3 several key scientific discoveries that enhance our lives today, were made by marginalized scientists. These three scientists, Rosalind E. Franklin, Alan M. Turing and Olga D. González-Sanabria, did not conform to the cultural expectations of how scientists should look and behave. Unfortunately, marginalized scientists are often viewed as just a resource rather than the lifeblood that constitutes science itself. We need to embrace scientists from all walks of life and corners of the globe; this will also mean that nobody is excluded from tackling the life-threatening societal challenges that lie ahead. An awareness of science policy is essential to safeguarding our future. Science policy deals with creating the framework and codes of conduct that determine how science can best serve society.4-6 Discussions around science policy are often accompanied by anecdotes of “good” and “bad” practices regarding the merits of diversity and inclusion. Excellence and truth, which flow inexorably from diversity and inclusion, are the bedrocks upon which science should influence political and economic outcomes. A vital area of science policy is to support the professional development of marginalized scientists, an objective that must be acted upon by scientific leaders and communicators...

Loading...
Thumbnail Image
Item

Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core-shell magnetic nanoparticles

2014, Hennes, M., Lotnyk, A., Mayr, S.G.

Magnetically anisotropic as well as magnetic core-shell nanoparticles (CS-NPs) with controllable properties are highly desirable in a broad range of applications. With this background, a setup for the synthesis of heterostructured magnetic core-shell nanoparticles, which relies on (optionally pulsed) DC plasma gas condensation has been developed. We demonstrate the synthesis of elemental nickel nanoparticles with highly tunable sizes and shapes and Ni@Cu CS-NPs with an average shell thickness of 10 nm as determined with scanning electron microscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. An analytical model that relies on classical kinetic gas theory is used to describe the deposition of Cu shell atoms on top of existing Ni cores. Its predictive power and possible implications for the growth of heterostructured NP in gas condensation processes are discussed.

Loading...
Thumbnail Image
Item

Dinuclear lanthanide complexes supported by a hybrid salicylaldiminato/calix[4]arene-ligand: Synthesis, structure, and magnetic and luminescence properties of (HNEt3)[Ln2(HL)(L)] (Ln = SmIII, EuIII, GdIII, TbIII)

2019, Ullmann, Steve, Hahn, Peter, Blömer, Laura, Mehnert, Anne, Laube, Christian, Abel, Bernd, Kersting, Berthold

The synthesis, structures, and properties of a new calix[4]arene ligand with an appended salicylaldimine unit (H4L = 25-[2-((2-methylphenol)imino)ethoxy]-26,27,28-trihydroxy-calix[4]arene) and four lanthanide complexes (HNEt3)[Ln2(HL)(L)] (Ln = SmIII (4), EuIII (5), GdIII (6), and TbIII (7)) are reported. X-ray crystallographic analysis (for 4 and 6) reveals an isostructural series of dimeric complexes with a triply-bridged NO3Ln(μ-O)2(OH⋯O)LnO3N core and two seven coordinated lanthanide ions. According to UV-vis spectrometric titrations in MeCN and ESI-MS the dimeric nature is maintained in solution. The apparent stability constants range between logK = 5.8 and 6.3. The appended salicylaldimines sensitize EuIII and TbIII emission (λexc 311 nm) in the solid state or immersed in a polycarbonate glass at 77 K (for 5, 7) and at 295 K (for 7). © The Royal Society of Chemistry 2019.

Loading...
Thumbnail Image
Item

Nanometer-resolved mechanical properties around GaN crystal surface steps

2014, Buchwald, J., Sarmanova, M., Rauschenbach, B., Mayr, S.G.

The mechanical properties of surfaces and nanostructures deviate from their bulk counterparts due to surface stress and reduced dimensionality. Experimental indentation-based techniques present the challenge of measuring these effects, while avoiding artifacts caused by the measurement technique itself. We performed a molecular dynamics study to investigate the mechanical properties of a GaN step of only a few lattice constants step height and scrutinized its applicability to indentation experiments using a finite element approach (FEM). We show that the breakdown of half-space symmetry leads to an "artificial" reduction of the elastic properties of comparable lateral dimensions which overlays the effect of surface stress. Contact resonance atomic force microscopy (CR-AFM) was used to compare the simulation results with experiments.

Loading...
Thumbnail Image
Item

Depth-Resolved Phase Analysis of Expanded Austenite Formed in Austenitic Stainless Steel

2020, Manova, Darina, Schlenz, Patrick, Gerlach, Jürgen W., Mändl, Stephan

Expanded austenite γN formed after nitrogen insertion into austenitic stainless steel and CoCr alloys is known as a hard and very wear resistant phase. Nevertheless, no single composition and lattice expansion can describe this phase with nitrogen in solid solution. Using in situ X-ray diffraction (XRD) during ion beam sputtering of expanded austenite allows a detailed depth-dependent phase analysis, correlated with the nitrogen depth profiles obtained by time-of-flight secondary ion mass spectrometry (ToF-SIMS) or glow discharge optical emission spectroscopy (GDOES). Additionally, in-plane XRD measurements at selected depths were performed for strain analysis. Surprisingly, an anomalous peak splitting for the (200) expanded peak was observed for some samples during nitriding and sputter etching, indicating a layered structure only for {200} oriented grains. The strain analysis as a function of depth and orientation of scattering vector (parallel/perpendicular to the surface) is inconclusive. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Data on single pulse fs laser induced submicron bubbles in the subsurface region of soda-lime glass

2020, Lai, Shengying, Ehrhardt, Martin, Lorenz, Pierre, Lu, Jian, Han, Bing, Zimmer, Klaus

Submicron bubble formation in the subsurface range of soda-lime glass is investigated. The bubbles are induced by single femtosecond laser pulse irradiation with the wavelength of λ = 775 nm, the pulse duration of tp = 150 fs and the laser beam diameter of ∼12 μm. The data shows the changes of the morphologies of the soda-lime glass after laser irradiation with different pulse energy. Moreover, the data shows the detail of the cross-section view of the bubble during the Focused ion beam (FIB) cutting. It is found that the bubbles can be formed in a rather narrow pulse energy range with the bubbles in the size of 300 nm ∼3 μm which is much smaller than the laser beam diameter. Data presented in this article are related to the research article “Submicron bubbles/voids formation in the subsurface region of soda-lime glass by single pulse fs laser-induced spallation” [1]. © 2020