Search Results

Now showing 1 - 2 of 2
  • Item
    Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields
    (College Park, MD : Institute of Physics Publishing, 2008) Kling, M.F.; Rauschenberger, J.; Verhoef, A.J.; Hasović, E.; Uphues, T.; Milošević, D.B.; Muller, H.G.; Vrakking, M.J.J.
    Sub-femtosecond control of the electron emission in above-threshold ionization of the rare gases Ar, Xe and Kr in intense few-cycle laser fields is reported with full angular resolution. Experimental data that were obtained with the velocity-map imaging technique are compared to simulations using the strong-field approximation (SFA) and full time-dependent Schrödinger equation (TDSE) calculations. We find a pronounced asymmetry in both the energy and angular distributions of the electron emission that critically depends on the carrier-envelope phase (CEP) of the laser field. The potential use of imaging techniques as a tool for single-shot detection of the CEP is discussed. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Feasibility of electrostatic microparticle propulsion
    (College Park, MD : Institute of Physics Publishing, 2008) Trottenberg, T.; Kersten, H.; Neumann, H.
    This paper discusses the feasibility of electrostatic space propulsion which uses microparticles as propellant. It is shown that particle charging in a plasma is not sufficient for electrostatic acceleration. Moreover, it appears technically difficult to extract charged particles out of a plasma for subsequent acceleration without them being discharged. Two novel thruster concepts are proposed. In the first one, particles with low secondary electron emission are charged using energetic electrons in the order of magnitude of 100eV. The second concept charges the particles by contact with needle electrodes at high electrostatic potential (∼20kV). Both methods allow the maximum possible charges on microparticles. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.