Search Results

Now showing 1 - 5 of 5
  • Item
    Trend assessment: Applications for hydrology and climate research
    (Göttingen : Copernicus GmbH, 2005) Kallache, M.; Rust, H.W.; Kropp, J.
    The assessment of trends in climatology and hydrology still is a matter of debate. Capturing typical properties of time series, like trends, is highly relevant for the discussion of potential impacts of global warming or flood occurrences. It provides indicators for the separation of anthropogenic signals and natural forcing factors by distinguishing between deterministic trends and stochastic variability. In this contribution river run-off data from gauges in Southern Germany are analysed regarding their trend behaviour by combining a deterministic trend component and a stochastic model part in a semi-parametric approach. In this way the trade-off between trend and autocorrelation structure can be considered explicitly. A test for a significant trend is introduced via three steps: First, a stochastic fractional ARIMA model, which is able to reproduce short-term as well as long-term correlations, is fitted to the empirical data. In a second step, wavelet analysis is used to separate the variability of small and large time-scales assuming that the trend component is part of the latter. Finally, a comparison of the overall variability to that restricted to small scales results in a test for a trend. The extraction of the large-scale behaviour by wavelet analysis provides a clue concerning the shape of the trend.
  • Item
    Combined rock slope stability and shallow landslide susceptibility assessment of the Jasmund cliff area (Rügen Island, Germany)
    (Katlenburg-Lindau : European Geophysical Society, 2009-5-8) Günther, A.; Thiel, C.
    In this contribution we evaluated both the structurally-controlled failure susceptibility of the fractured Cretaceous chalk rocks and the topographically-controlled shallow landslide susceptibility of the overlying glacial sediments for the Jasmund cliff area on Rügen Island, Germany. We employed a combined methodology involving spatially distributed kinematical rock slope failure testing with tectonic fabric data, and both physically- and inventory-based shallow landslide susceptibility analysis. The rock slope failure susceptibility model identifies areas of recent cliff collapses, confirming its value in predicting the locations of future failures. The model reveals that toppling is the most important failure type in the Cretaceous chalk rocks of the area. The shallow landslide susceptibility analysis involves a physically-based slope stability evaluation which utilizes material strength and hydraulic conductivity data, and a bivariate landslide susceptibility analysis exploiting landslide inventory data and thematic information on ground conditioning factors. Both models show reasonable success rates when evaluated with the available inventory data, and an attempt was made to combine the individual models to prepare a map displaying both terrain instability and landslide susceptibility. This combination highlights unstable cliff portions lacking discrete landslide areas as well as cliff sections highly affected by past landslide events. Through a spatial integration of the rock slope failure susceptibility model with the combined shallow landslide assessment we produced a comprehensive landslide susceptibility map for the Jasmund cliff area.
  • Item
    On freshwater-dependent bifurcations in box models of the interhemispheric thermohaline circulation
    (Abingdon : Taylor and Francis Ltd., 2002) Titz, S.; Kuhlbrodt, T.; Rahmstorf, S.; Feudel, U.
    Conceptual box models of the interhemispheric thermohaline circulation are studied with respect to bifurcations. Freshwater fluxes are the main control parameters of the system: they determine the stable states and transitions between stable states of the large-scale thermohaline circulation. In this study of interhemispheric box models both numerical and analytical methods are used to investigate transition mechanisms of the thermohaline circulation. The box model examined first is an interhemispheric four-box model. It is shown that the two bifurcations where the present THC can become unstable, the saddle-node and the Hopf bifurcation, depend in a different way on hemispheric freshwater fluxes. A reduction of the model variables leads to the conclusion that two fixed freshwater fluxes between three surface boxes are the model feature responsible for the bifurcation behavior found. The significance of the Hopf bifurcation for the stability of the thermohaline circulation is discussed.
  • Item
    Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics
    (Göttingen : Copernicus GmbH, 2009) Kawa, S.R.; Stolarski, R.S.; Newman, P.A.; Douglass, A.R.; Rex, M.; Hofmann, D.J.; Santee, M.L.; Frieler, K.
    The impact and significance of uncertainties in model calculations of stratospheric ozone loss resulting from known uncertainty in chemical kinetics parameters is evaluated in trajectory chemistry simulations for the Antarctic and Arctic polar vortices. The uncertainty in modeled ozone loss is derived from Monte Carlo scenario simulations varying the kinetic (reaction and photolysis rate) parameters within their estimated uncertainty bounds. Simulations of a typical winter/spring Antarctic vortex scenario and Match scenarios in the Arctic produce large uncertainty in ozone loss rates and integrated seasonal loss. The simulations clearly indicate that the dominant source of model uncertainty in polar ozone loss is uncertainty in the Cl2O 2 photolysis reaction, which arises from uncertainty in laboratory-measured molecular cross sections at atmospherically important wavelengths. This estimated uncertainty in JCl 2O2 from laboratory measurements seriously hinders our ability to model polar ozone loss within useful quantitative error limits. Atmospheric observations, however, suggest that the Cl2O2 photolysis uncertainty may be less than that derived from the lab data. Comparisons to Match, South Pole ozonesonde, and Aura Microwave Limb Sounder (MLS) data all show that the nominal recommended rate simulations agree with data within uncertainties when the Cl2O2 photolysis error is reduced by a factor of two, in line with previous in situ ClOx measurements. Comparisons to simulations using recent cross sections from Pope et al. (2007) are outside the constrained error bounds in each case. Other reactions producing significant sensitivity in polar ozone loss include BrO + ClO and its branching ratios. These uncertainties challenge our confidence in modeling polar ozone depletion and projecting future changes in response to changing halogen emissions and climate. Further laboratory, theoretical, and possibly atmospheric studies are needed.
  • Item
    Saharan dust transport and deposition towards the tropicalnorthern Atlantic
    (Göttingen : Copernicus, 2009) Schepanski, K.; Tegen, I.; MacKe, A.
    We present a study of Saharan dust export towards the tropical North Atlantic using the regional dust emission, transport and deposition model LM-MUSCAT. Horizontal and vertical distribution of dust optical thickness, concentration, and dry and wet deposition rates are used to describe seasonality of dust export and deposition towards the eastern Atlantic for three typical months in different seasons. Deposition rates strongly depend on the vertical dust distribution, which differs with seasons. Furthermore the contribution of dust originating from the Bod́eĺe Depression to Saharan dust over the Atlantic is investigated. A maximum contribution of Bod́eĺe dust transported towards the Cape Verde Islands is evident in winter when the Bod́eĺe source area is most active and dominant with regard to activation frequency and dust emission. Limitations of using satellite retrievals to estimate dust deposition are highlighted.