Search Results

Now showing 1 - 10 of 41
Loading...
Thumbnail Image
Item

Study of the tidal variations in mesospheric temperature at low and mid latitudes from WINDII and potassium lidar observations

2004, Shepherd, M., Fricke-Begemann, C.

Zonal mean daytime temperatures from the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) and nightly temperatures from a potassium (K) lidar are employed in the study of the tidal variations in mesospheric temperature at low and mid latitudes in the Northern Hemisphere. The analysis is applied to observations at 89 km height for winter solstice, December to February (DJF), at 55° N, and for May and November at 28° N. The WINDII results are based on observations from 1991 to 1997. The K-lidar observations for DJF at Kühlungsborn (54° N) were from 1996-1999, while those for May and November at Tenerife 28° N were from 1999. To avoid possible effects from year-to-year variability in the temperatures observed, as well as differences due to instrument calibration and observation periods, the mean temperature field is removed from the respective data sets, assuming that only tidal and planetary scale perturbations remain in the temperature residuals. The latter are then binned in 0.5 h periods and the individual data sets are fitted in a least-mean square sense to 12-h and 8-h harmonics, to infer semidiurnal and terdiurnal tidal parameters. Both the K-lidar and WINDII independently observed a strong semidiurnal tide in November, with amplitudes of 13 K and 7.4 K, respectively. Good agreement was also found in the tidal parameters derived from the two data sets for DJF and May. It was recognized that insufficient local time coverage of the two separate data sets could lead to an overestimation of the semidiurnal tidal amplitude. A combined ground-based/satellite data set with full diurnal local time coverage was created which was fitted to 24 h+ 12 h+8 h harmonics and a novel method applied to account for possible differences between the daytime and nighttime means. The results still yielded a strong semidiurnal tide in November at 28° N with an amplitude of 8.8 K which is twice the SD amplitude in May and DJF. The diurnal tidal parameters were practically the same at 28° N and 55° N, in November and DJF, respectively, with an amplitude of 6.5 K and peaking at ∼9h. The diurnal and semidiurnal amplitudes in May were about the same, 4 K, and 4.6 K, while the terdiurnal tide had the same amplitudes and phases in May and November at 28° N. Good agreement is found with other experimental data while models tend to underestimate the amplitudes.

Loading...
Thumbnail Image
Item

An integrated 3.1-5.1 GHz pulse generator for ultra-wideband wireless localization systems

2006, Fan, X., Fischer, G., Dietrich, B.

This paper presents an implementation of an integrated Ultra-wideband (UWB), Binary-Phase Shift Keying (BPSK) Gaussian modulated pulse generator. VCO, multiplier and passive Gaussian filter are the key components. The VCO provides the carrier frequency of 4.1 GHz, the LC Gaussian filter is responsible for the pulse shaping in the baseband. Multiplying the baseband pulse and the VCO frequency shifts the pulse to the desired center frequency. The generated Gaussian pulse ocupppies the frequency range from 3.1 to 5.1 GHz with the center frequency at 4.1 GHz. Simulations and measured results show that this spectrum fulfills the mask for indoor communication systems given by the FCC (Federal Communications Commission, 2002). The total power consumption is 55 mW using a supply voltage of 2.5 V. Circuits are realized using the IHP 0.25 μm SiGe:C BiCMOS technology.

Loading...
Thumbnail Image
Item

Gravitational lensing in astronomy

1998, Wambsganss, J.

Deflection of light by gravity was predicted by General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically. Among them were: the possibility of multiple or ring-like images of background sources, the use of lensing as a gravitational telescope on very faint and distant objects, and the possibility of determining Hubble's constant with lensing. It is only relatively recently, (after the discovery of the first doubly imaged quasar in 1979), that gravitational lensing has became an observational science. Today lensing is a booming part of astrophysics. In addition to multiply-imaged quasars, a number of other aspects of lensing have been discovered: For example, giant luminous arcs, quasar microlensing, Einstein rings, galactic microlensing events, arclets, and weak gravitational lensing. At present, literally hundreds of individual gravitational lens phenomena are known. Although still in its childhood, lensing has established itself as a very useful astrophysical tool with some remarkable successes. It has contributed significant new results in areas as different as the cosmological distance scale, the large scale matter distribution in the universe, mass and mass distribution of galaxy clusters, the physics of quasars, dark matter in galaxy halos, and galaxy structure. Looking at these successes in the recent past we predict an even more luminous future for gravitational lensing.

Loading...
Thumbnail Image
Item

Resonance Raman and optical dephasing study of HITCI

1999, Kummrow, A., Ashworth, S.H., Lenz, K.

Line shape analysis based on resonance Raman spectra of HITCI is used to determine the details of the vibrational part of the line broadening function. Forced Light Scattering with 20 fs pulses from a Ti: sapphire laser measured optical dephasing probing with an Ar+ laser. The observed response is well described by the line broadening function derived from the fluorescence line shape.

Loading...
Thumbnail Image
Item

Starspots

2009, Strassmeier, K.G.

Starspots are created by local magnetic fields on the surfaces of stars, just as sunspots. Their fields are strong enough to suppress the overturning convective motion and thus block or redirect the flow of energy from the stellar interior outwards to the surface and consequently appear as locally cool and therefore dark regions against an otherwise bright photosphere (Biermann in Astronomische Nachrichten 264:361, 1938; Z Astrophysik 25:135, 1948). As such, starspots are observable tracers of the yet unknown internal dynamo activity and allow a glimpse into the complex internal stellar magnetic field structure. Starspots also enable the precise measurement of stellar rotation which is among the key ingredients for the expected internal magnetic topology. But whether starspots are just blown-up sunspot analogs, we do not know yet. This article is an attempt to review our current knowledge of starspots. A comparison of a white-light image of the Sun (G2V, 5 Gyr) with a Doppler image of a young solar-like star (EK Draconis; G1.5V, age 100 Myr, rotation 10 × Ω Sun) and with a mean-field dynamo simulation suggests that starspots can be of significantly different appearance and cannot be explained with a scaling of the solar model, even for a star of same mass and effective temperature. Starspots, their surface location and migration pattern, and their link with the stellar dynamo and its internal energy transport, may have far reaching impact also for our understanding of low-mass stellar evolution and formation. Emphasis is given in this review to their importance as activity tracers in particular in the light of more and more precise exoplanet detections around solar-like, and therefore likely spotted, host stars. © 2009 Springer-Verlag.

Loading...
Thumbnail Image
Item

Phase noise and jitter modeling for fractional-N PLLs

2007, Osmany, S.A., Herzel, F., Schmalz, K., Winkler, W.

We present an analytical phase noise model for fractional-N phase-locked loops (PLL) with emphasis on integrated RF synthesizers in the GHz range. The noise of the crystal reference, the voltage-controlled oscillator (VCO), the loop filter, the charge pump, and the sigma-delta modulator (SDM) is filtered by the PLL operation. We express the rms phase error (jitter) in terms of phase noise of the reference, the VCO phase noise and the third-order loop filter parameters. In addition, we consider OFDM systems, where the PLL phase noise is reduced by digital signal processing after down-conversion of the RF signal to baseband. The rms phase error is discussed as a function of the loop parameters. Our model drastically simplifies the noise optimization of the PLL loop dynamics.

Loading...
Thumbnail Image
Item

Mapping High-Temperature Superconductors—A Scientometric Approach

2008, Barth, Andreas, Marx, Werner

This study has been carried out to analyze the research field of high-temperature superconductivity and to demonstrate the potential of modern databases and search systems for generating meta-information. The alkaline earth (A2) rare earth (RE) cuprate high-temperature superconductors as a typical inorganic compound family and the corresponding literature were analyzed by scientometric methods. The time dependent overall number of articles and patents and of the publications related to specific compound subsets and subject categories are given. The data reveal a significant decrease of basic research activity in this research field. The A2 RE cuprate species covered by the CAS compound file were analyzed with respect to the occurrence of specific elements in order to visualize known and unknown substances and to identify characteristic patterns. The quaternary and quinternary cuprates were selected and the number of compound species as a function of specific combinations of A2 and RE elements is given. The Cu/O and RE/A2 ratios of the quaternary cuprate species as a function of A2 and RE atoms are shown. In addition, the research landscape of the MgB2 related publications was established using STN AnaVist, an analysis tool recently developed by STN International.

Loading...
Thumbnail Image
Item

Three years of routine Raman lidar measurements of tropospheric aerosols: Backscattering, extinction, and residual layer height

2002, Schneider, J., Eixmann, R.

We have performed a three-year series of routine lidar measurements at preselected times. The measurements were performed between 1 December 1997, and 30 November 2000, at Kühlungsborn, Germany (54°07′N, 11°46′E). Using a Rayleigh/Mie/Raman lidar system, we measured the aerosol backscatter coefficients at three wavelengths and the extinction coefficient at one wavelength. The present data analysis focuses on after-sunset Raman measurements obtained on cloud-free days. Aerosol backscatter profiles are available for altitudes above 100 m, while the majority of the extinction measurements has been restricted to heights above the residual layer. The residual layer shows an annual cycle with its maximum height in summer (2000 m) and minimum height in winter (850 m). The backscatter coefficients in the residual layer were found to be about 10 times higher than above. The mean aerosol optical depth above the residual layer and below 5 km is 0.3(±1.0) × 10-2 in summer, and 1.5(±1.0) × 10-2 in winter, which almost is negligible compared to values measured in during daytime in the planetary boundary layer. A cluster analysis of the backward trajectories yielded two major directions of air mass origin above the residual layer and 4 major directions inside. A marked difference between the aerosol properties dependent on the air mass origin could be found for air masses originating from the west and travelling at high wind speeds. Comparing the measured spectral dependence of the backscatter coefficients with data from the Global Aerosol Data Set, we found a general agreement, but only a few conclusions with respect to the aerosol type could be drawn due to the high variability of the measured backscatter coefficients.

Loading...
Thumbnail Image
Item

Characteristics of austenitic stainless steel nitrided in a hybrid glow discharge plasma

2009, Oliveira, R.M., Ueda, M., Silva, L.L.G., Reuther, H., Lepienski, C.M.

A nitriding process based on two distinct nitrogen glow discharge modes, with sample temperatures ranging from 380 °Cto480°C, was employed to treat the surface of austenitic stainless steel (SS 304). The temperature is controlled exclusively by switching the operation conditions of the discharges. First mode of operation is the conventional one, named cathodic, which runs at higher pressure values (1 mbar) in comparison to the second mode, named anodic, which runs at the pressure range of 10-3 -10-2 mbar. Cathodic mode is used to quickly heat the sample holder, by the high ion flux. On the other hand, in the anodic mode, due to the lower operation pressure, higher effective ion acceleration takes place, which allows deeper ion implantation into the sample surface. This hybrid process was thoroughly explored regarding the duty cycle and conditions of operation, to achieve optimal performance of the treatments, which led to the attainment of surface hardness for samples of AISI SS 304 as high as 20 GPa and improvements including higher elastic modulus and resistance against corrosion. Detailed comparison among samples treated by this process with others treated by conventional method was done using nanoindentation, Auger Electron Spectroscopy (AES) and corrosion resistance testing.

Loading...
Thumbnail Image
Item

Coherent motion of low frequency vibrations in ultrafast excited state proton transfer

1999, Pfeiffer, M., Chudoba, C., Lau, A., Lenz, K., Elsaesser, T.

Photoexcitation of internal proton transfer in the tinuvin molecule causes the excitation of some low frequency vibrational modes which oscillate with high amplitudes in a coherent manner over 700 fs. Such effect is observed for the first time applying two color pump/probe measurement with 25 fs pulses. Based on resonance Raman spectra a normal coordinate analysis of the modes is performed. It is shown that the nuclear movement given by the normal vibration of one of the modes serves to open up a barrierfree proton transfer path.