Search Results

Now showing 1 - 10 of 74
  • Item
    Benchmark of Simplified Time-Dependent Density Functional Theory for UV–Vis Spectral Properties of Porphyrinoids
    (Weinheim : Wiley-VCH Verlag, 2019) Batra, Kamal; Zahn, Stefan; Heine, Thomas
    Time-dependent density functional theory is thoroughly benchmarked for the predictive calculation of UV–vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density functional theory, including the simplified Tamm–Dancoff approximation, are compared. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm–Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ≈0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ≈0.04 eV).
  • Item
    Cytocompatible, Injectable, and Electroconductive Soft Adhesives with Hybrid Covalent/Noncovalent Dynamic Network
    (Weinheim : Wiley-VCH, 2019) Xu, Yong; Patsis, Panagiotis A.; Hauser, Sandra; Voigt, Dagmar; Rothe, Rebecca; Günther, Markus; Cui, Meiying; Yang, Xuegeng; Wieduwild, Robert; Eckert, Kerstin; Neinhuis, Christoph; Akbar, Teuku Fawzul; Minev, Ivan R.; Pietzsch, Jens; Zhang, Yixin
    Synthetic conductive biopolymers have gained increasing interest in tissue engineering, as they can provide a chemically defined electroconductive and biomimetic microenvironment for cells. In addition to low cytotoxicity and high biocompatibility, injectability and adhesiveness are important for many biomedical applications but have proven to be very challenging. Recent results show that fascinating material properties can be realized with a bioinspired hybrid network, especially through the synergy between irreversible covalent crosslinking and reversible noncovalent self-assembly. Herein, a polysaccharide-based conductive hydrogel crosslinked through noncovalent and reversible covalent reactions is reported. The hybrid material exhibits rheological properties associated with dynamic networks such as self-healing and stress relaxation. Moreover, through fine-tuning the network dynamics by varying covalent/noncovalent crosslinking content and incorporating electroconductive polymers, the resulting materials exhibit electroconductivity and reliable adhesive strength, at a similar range to that of clinically used fibrin glue. The conductive soft adhesives exhibit high cytocompatibility in 2D/3D cell cultures and can promote myogenic differentiation of myoblast cells. The heparin-containing electroconductive adhesive shows high biocompatibility in immunocompetent mice, both for topical application and as injectable materials. The materials could have utilities in many biomedical applications, especially in the area of cardiovascular diseases and wound dressing.
  • Item
    Biocatalytic Degradation Efficiency of Postconsumer Polyethylene Terephthalate Packaging Determined by Their Polymer Microstructures
    (Weinheim : Wiley-VCH, 2019) Wei, Ren; Breite, Daniel; Song, Chen; Gräsing, Daniel; Ploss, Tina; Hille, Patrick; Schwerdtfeger, Ruth; Matysik, Jörg; Schulze, Agnes; Zimmermann, Wolfgang
    Polyethylene terephthalate (PET) is the most important mass-produced thermoplastic polyester used as a packaging material. Recently, thermophilic polyester hydrolases such as TfCut2 from Thermobifida fusca have emerged as promising biocatalysts for an eco-friendly PET recycling process. In this study, postconsumer PET food packaging containers are treated with TfCut2 and show weight losses of more than 50% after 96 h of incubation at 70 °C. Differential scanning calorimetry analysis indicates that the high linear degradation rates observed in the first 72 h of incubation is due to the high hydrolysis susceptibility of the mobile amorphous fraction (MAF) of PET. The physical aging process of PET occurring at 70 °C is shown to gradually convert MAF to polymer microstructures with limited accessibility to enzymatic hydrolysis. Analysis of the chain-length distribution of degraded PET by nuclear magnetic resonance spectroscopy reveals that MAF is rapidly hydrolyzed via a combinatorial exo- and endo-type degradation mechanism whereas the remaining PET microstructures are slowly degraded only by endo-type chain scission causing no detectable weight loss. Hence, efficient thermostable biocatalysts are required to overcome the competitive physical aging process for the complete degradation of postconsumer PET materials close to the glass transition temperature of PET.
  • Item
    Toward Functional Synthetic Cells: In-Depth Study of Nanoparticle and Enzyme Diffusion through a Cross-Linked Polymersome Membrane
    (Weinheim : Wiley-VCH, 2019) Gumz, Hannes; Boye, Susanne; Iyisan, Banu; Krönert, Vera; Formanek, Petr; Voit, Brigitte; Lederer, Albena; Appelhans, Dietmar
    Understanding the diffusion of nanoparticles through permeable membranes in cell mimics paves the way for the construction of more sophisticated synthetic protocells with control over the exchange of nanoparticles or biomacromolecules between different compartments. Nanoparticles postloading by swollen pH switchable polymersomes is investigated and nanoparticles locations at or within polymersome membrane and polymersome lumen are precisely determined. Validation of transmembrane diffusion properties is performed based on nanoparticles of different origin—gold, glycopolymer protein mimics, and the enzymes myoglobin and esterase—with dimensions between 5 and 15 nm. This process is compared with the in situ loading of nanoparticles during polymersome formation and analyzed by advanced multiple-detector asymmetrical flow field-flow fractionation (AF4). These experiments are supported by complementary i) release studies of protein mimics from polymersomes, ii) stability and cyclic pH switches test for in polymersome encapsulated myoglobin, and iii) cryogenic transmission electron microscopy studies on nanoparticles loaded polymersomes. Different locations (e.g., membrane and/or lumen) are identified for the uptake of each protein. The protein locations are extracted from the increasing scaling parameters and the decreasing apparent density of enzyme-containing polymersomes as determined by AF4. Postloading demonstrates to be a valuable tool for the implementation of cell-like functions in polymersomes.
  • Item
    Making Sense of Complex Carbon and Metal/Carbon Systems by Secondary Electron Hyperspectral Imaging
    (Weinheim : Wiley-VCH, 2019) Abrams, Kerry J.; Dapor, Maurizio; Stehling, Nicola; Azzolini, Martina; Kyle, Stephan J.; Schäfer, Jan; Quade, Antje; Mika, Filip; Kratky, Stanislav; Pokorna, Zuzana; Konvalina, Ivo; Mehta, Danielle; Black, Kate; Rodenburg, Cornelia
    Carbon and carbon/metal systems with a multitude of functionalities are ubiquitous in new technologies but understanding on the nanoscale remains elusive due to their affinity for interaction with their environment and limitations in available characterization techniques. This paper introduces a spectroscopic technique and demonstrates its capacity to reveal chemical variations of carbon. The effectiveness of this approach is validated experimentally through spatially averaging spectroscopic techniques and using Monte Carlo modeling. Characteristic spectra shapes and peak positions for varying contributions of sp2-like or sp3-like bond types and amorphous hydrogenated carbon are reported under circumstances which might be observed on highly oriented pyrolytic graphite (HOPG) surfaces as a result of air or electron beam exposure. The spectral features identified above are then used to identify the different forms of carbon present within the metallic films deposited from reactive organometallic inks. While spectra for metals is obtained in dedicated surface science instrumentation, the complex relations between carbon and metal species is only revealed by secondary electron (SE) spectroscopy and SE hyperspectral imaging obtained in a state-of-the-art scanning electron microscope (SEM). This work reveals the inhomogeneous incorporation of carbon on the nanoscale but also uncovers a link between local orientation of metallic components and carbon form.
  • Item
    Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions
    (Weinheim : Wiley-VCH, 2015) Zhang, Zhenglong; Fang, Yurui; Wang, Wenhui; Chen, Li; Sun, Mengtao
    Plasmonics is a well-established field, exploiting the interaction of light and metals at the nanoscale; with the help of surface plasmon polaritons, remote-excitation can also be observed by using silver or gold plasmonic waveguides. Recently, plasmonic catalysis was established as a new exciting platform for heterogeneous catalytic reactions. Recent reports present remote-excitation surface catalytic reactions as a route to enhance the rate of chemical reactions, and offer a pathway to control surface catalytic reactions. In this review, we focus on recent advanced reports on silver plasmonic waveguide for remote-excitation surface catalytic reactions. First, the synthesis methods and characterization techniques of sivelr nanowire plasmonic waveguides are summarized, and the properties and physical mechanisms of plasmonic waveguides are presented in detail. Then, the applications of plasmonic waveguides including remote excitation fluorescence and SERS are introduced, and we focus on the field of remote-excitation surface catalytic reactions. Finally, forecasts are made for possible future applications for the remote-excitation surface catalysis by plasmonic waveguides in living cells.
  • Item
    Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Reichert, Doreen; Friedrichs, Jens; Ritter, Steffi; Käubler, Theresa; Werner, Carsten; Bornhäuser, Martin; Corbeil, Denis
    Xenogenic transplantation models have been developed to study human hematopoiesis in immunocompromised murine recipients. They still have limitations and therefore it is important to delineate all players within the bone marrow that could account for species-specific differences. Here, we evaluated the proliferative capacity, morphological and physical characteristics of human CD34+ hematopoietic stem and progenitor cells (HSPCs) after co-culture on murine or human bone marrow-derived mesenchymal stromal cells (MSCs). After seven days, human CD34+CD133– HSPCs expanded to similar extents on both feeder layers while cellular subsets comprising primitive CD34+CD133+ and CD133+CD34– phenotypes are reduced fivefold on murine MSCs. The number of migrating HSPCs was also reduced on murine cells suggesting that MSC adhesion influences cellular polarization of HSPC. We used atomic force microscopy-based single-cell force spectroscopy to quantify their adhesive interactions. We found threefold higher detachment forces of human HSPCs from murine MSCs compared to human ones. This difference is related to the N-cadherin expression level on murine MSCs since its knockdown abolished their differential adhesion properties with human HSPCs. Our observations highlight phenotypic, morphological and adhesive differences of human HSPCs when cultured on murine or human MSCs, which raise some caution in data interpretation when xenogenic transplantation models are used.
  • Item
    Worldwide variations in artificial skyglow
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Kyba, Christopher C.M.; Tong, Kai Pong; Bennie, Jonathan; Birriel, Ignacio; Birriel, Jennifer J.; Cool, Andrew; Danielsen, Arne; Davies, Thomas W.; den Outer, Peter N.; Edwards, William; Ehlert, Rainer; Falchi, Fabio; Fischer, Jürgen; Giacomelli, Andrea; Giubbilini, Francesco; Haaima, Marty; Hesse, Claudia; Heygster, Georg; Hölker, Franz; Inger, Richard; Jensen, Linsey J.; Kuechly, Helga U.; Kuehn, John; Langill, Phil; Lolkema, Dorien E.; Nagy, Matthew; Nievas, Miguel; Ochi, Nobuaki; Popow, Emil; Posch, Thomas; Puschnig, Johannes; Ruhtz, Thomas; Schmidt, Wim; Schwarz, Robert; Schwope, Axel; Spoelstra, Henk; Tekatch, Anthony; Trueblood, Mark; Walker, Constance E.; Weber, Michael; Welch, Douglas L.; Zamorano, Jaime; Gaston, Kevin J.
    Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about skyglow properties. Skyglow is observed to vary over four orders of magnitude, a range hundreds of times larger than was the case before artificial light. Nearly all of the study sites were polluted by artificial light. A non-linear relationship is observed between the sky brightness on clear and overcast nights, with a change in behavior near the rural to urban landuse transition. Overcast skies ranged from a third darker to almost 18 times brighter than clear. Clear sky radiances estimated by the World Atlas of Artificial Night Sky Brightness were found to be overestimated by ~25%; our dataset will play an important role in the calibration and ground truthing of future skyglow models. Most of the brightly lit sites darkened as the night progressed, typically by ~5% per hour. The great variation in skyglow radiance observed from site-to-site and with changing meteorological conditions underlines the need for a long-term international monitoring program.
  • Item
    Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Knorr, Anne; Ludwig, Ralf
    Direct spectroscopic evidence for H-bonding between like-charged ions is reported for the ionic liquid, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. New infrared bands in the OH frequency range appear at low temperatures indicating the formation of H-bonded cation-cation clusters similar to those known for water and alcohols. Supported by DFT calculations, these vibrational bands can be assigned to attractive interaction between the hydroxyl groups of the cations. The repulsive Coulomb interaction is overcome by cooperative hydrogen bonding between ions of like charge. The transition energy from purely cation-anion interacting configurations to those including cation-cation H-bonds is determined to be 3–4 kJmol−1. The experimental findings and DFT calculations strongly support the concept of anti-electrostatic hydrogen bonds (AEHBs) as recently suggested by Weinhold and Klein. The like-charge configurations are kinetically stabilized with decreasing temperatures.
  • Item
    Structural and electronic properties of epitaxial multilayer h-BN on Ni(111) for spintronics applications
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Tonkikh, A.A.; Voloshina, E.N.; Werner, P.; Blumtritt, H.; Senkovskiy, B.; Güntherodt, G.; Parkin, S.S.P.; Dedkov, Yu. S.
    Hexagonal boron nitride (h-BN) is a promising material for implementation in spintronics due to a large band gap, low spin-orbit coupling, and a small lattice mismatch to graphene and to close-packed surfaces of fcc-Ni(111) and hcp-Co(0001). Epitaxial deposition of h-BN on ferromagnetic metals is aimed at small interface scattering of charge and spin carriers. We report on the controlled growth of h-BN/Ni(111) by means of molecular beam epitaxy (MBE). Structural and electronic properties of this system are investigated using cross-section transmission electron microscopy (TEM) and electron spectroscopies which confirm good agreement with the properties of bulk h-BN. The latter are also corroborated by density functional theory (DFT) calculations, revealing that the first h-BN layer at the interface to Ni is metallic. Our investigations demonstrate that MBE is a promising, versatile alternative to both the exfoliation approach and chemical vapour deposition of h-BN.