Search Results

Now showing 1 - 4 of 4
  • Item
    Preparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles
    (New York, NY [u.a.] : Springer, 2015) Weidner, A.; Gräfe, C.; von der Lühe, M.; Remmer, H.; Clement, J.H.; Eberbeck, D.; Ludwig, F.; Müller, R.; Schacher, F.H.; Dutz, S.
    Nanoparticles experience increasing interest for a variety of medical and pharmaceutical applications. When exposing nanomaterials, e.g., magnetic iron oxide nanoparticles (MNP), to human blood, a protein corona consisting of various components is formed immediately. The composition of the corona as well as its amount bound to the particle surface is dependent on different factors, e.g., particle size and surface charge. The actual composition of the formed protein corona might be of major importance for cellular uptake of magnetic nanoparticles. The aim of the present study was to analyze the formation of the protein corona during in vitro serum incubation in dependency of incubation time and temperature. For this, MNP with different shells were incubated in fetal calf serum (FCS, serving as protein source) within a water bath for a defined time and at a defined temperature. Before and after incubation the particles were characterized by a variety of methods. It was found that immediately (seconds) after contact of MNP and FCS, a protein corona is formed on the surface of MNP. This formation led to an increase of particle size and a slight agglomeration of the particles, which was relatively constant during the first minutes of incubation. A longer incubation (from hours to days) resulted in a stronger agglomeration of the FCS incubated MNP. Quantitative analysis (gel electrophoresis) of serum-incubated particles revealed a relatively constant amount of bound proteins during the first minutes of serum incubation. After a longer incubation (>20 min), a considerably higher amount of surface proteins was determined for incubation temperatures below 40 °C. For incubation temperatures above 50 °C, the influence of time was less significant which might be attributed to denaturation of proteins during incubation. Overall, analysis of the molecular weight distribution of proteins found in the corona revealed a clear influence of incubation time and temperature on corona composition.
  • Item
    Optical Properties of Silicon Nanowires Fabricated by Environment-Friendly Chemistry
    (New York, NY [u.a.] : Springer, 2016) Gonchar, Kirill A.; Zubairova, Alsu A.; Schleusener, Alexander; Osminkina, Liubov A.; Sivakov, Vladimir
    Silicon nanowires (SiNWs) were fabricated by metal-assisted chemical etching (MACE) where hydrofluoric acid (HF), which is typically used in this method, was changed into ammonium fluoride (NH4F). The structure and optical properties of the obtained SiNWs were investigated in details. The length of the SiNW arrays is about 2 μm for 5 min of etching, and the mean diameter of the SiNWs is between 50 and 200 nm. The formed SiNWs demonstrate a strong decrease of the total reflectance near 5-15 % in the spectral region λ < 1 μm in comparison to crystalline silicon (c-Si) substrate. The interband photoluminescence (PL) and Raman scattering intensities increase strongly for SiNWs in comparison with the corresponding values of the c-Si substrate. These effects can be interpreted as an increase of the excitation intensity of SiNWs due to the strong light scattering and the partial light localization in an inhomogeneous optical medium. Along with the interband PL was also detected the PL of SiNWs in the spectral region of 500-1100 nm with a maximum at 750 nm, which can be explained by the radiative recombination of excitons in small Si nanocrystals at nanowire sidewalls in terms of a quantum confinement model. So SiNWs, which are fabricated by environment-friendly chemistry, have a great potential for use in photovoltaic and photonics applications.
  • Item
    Free-standing millimetre-long Bi2Te3 sub-micron belts catalyzed by TiO2 nanoparticles
    (New York, NY [u.a.] : Springer, 2016) Schönherr, Piet; Zhang, Fengyu; Kojda, Danny; Mitdank, Rüdiger; Albrecht, Martin; Fischer, Saskia F.; Hesjedal, Thorsten
    Physical vapour deposition (PVD) is used to grow millimetre-long Bi2Te3 sub-micron belts catalysed by TiO2 nanoparticles. The catalytic efficiency of TiO2 nanoparticles for the nanostructure growth is compared with the catalyst-free growth employing scanning electron microscopy. The catalyst-coated and catalyst-free substrates are arranged side-by-side, and overgrown at the same time, to assure identical growth conditions in the PVD furnace. It is found that the catalyst enhances the yield of the belts. Very long belts were achieved with a growth rate of 28 nm/min. A ∼1-mm-long belt with a rectangular cross section was obtained after 8 h of growth. The thickness and width were determined by atomic force microscopy, and their ratio is ∼1:10. The chemical composition was determined to be stoichiometric Bi2Te3 using energy-dispersive X-ray spectroscopy. Temperature-dependent conductivity measurements show a characteristic increase of the conductivity at low temperatures. The room temperature conductivity of 0.20 × 10(5) S m (-1) indicates an excellent sample quality.
  • Item
    Electron Tomography of Pencil-Shaped GaN/(In,Ga)N Core-Shell Nanowires
    (New York, NY [u.a.] : Springer, 2019) Nicolai, Lars; Gačević, Žarko; Calleja, Enrique; Trampert, Achim
    The three-dimensional structure of GaN/(In,Ga)N core-shell nanowires with multi-faceted pencil-shaped apex is analyzed by electron tomography using high-angle annular dark-field mode in a scanning transmission electron microscope. Selective area growth on GaN-on-sapphire templates using a patterned mask is performed by molecular beam epitaxy to obtain ordered arrays of uniform nanowires. Our results of the tomographic reconstruction allow the detailed determination of the complex morphology of the inner (In,Ga)N multi-faceted shell structure and its deviation from the perfect hexagonal symmetry. The tomogram unambiguously identifies a dot-in-a-wire configuration at the nanowire apex including the exact shape and size, as well as the spatial distribution of its chemical composition. © 2019, The Author(s).