Search Results

Now showing 1 - 10 of 35
  • Item
    Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals
    (Melville, NY : AIP Publ., 2019) Galazka, Zbigniew; Ganschow, Steffen; Schewski, Robert; Irmscher, Klaus; Klimm, Detlef; Kwasniewski, Albert; Pietsch, Mike; Fiedler, Andreas; Schulze-Jonack, Isabelle; Albrecht, Martin; Schröder, Thomas; Bickermann, Matthias
    Truly bulk ZnGa2O4 single crystals were obtained directly from the melt. High melting point of 1900 ± 20 °C and highly incongruent evaporation of the Zn- and Ga-containing species impose restrictions on growth conditions. The obtained crystals are characterized by a stoichiometric or near-stoichiometric composition with a normal spinel structure at room temperature and by a narrow full width at half maximum of the rocking curve of the 400 peak of (100)-oriented samples of 23 arcsec. ZnGa2O4 is a single crystalline spinel phase with the Ga/Zn atomic ratio up to about 2.17. Melt-grown ZnGa2O4 single crystals are thermally stable up to 1100 and 700 °C when subjected to annealing for 10 h in oxidizing and reducing atmospheres, respectively. The obtained ZnGa2O4 single crystals were either electrical insulators or n-type semiconductors/degenerate semiconductors depending on growth conditions and starting material composition. The as-grown semiconducting crystals had the resistivity, free electron concentration, and maximum Hall mobility of 0.002–0.1 Ωcm, 3 × 1018–9 × 1019 cm−3, and 107 cm2 V−1 s−1, respectively. The semiconducting crystals could be switched into the electrically insulating state by annealing in the presence of oxygen at temperatures ≥700 °C for at least several hours. The optical absorption edge is steep and originates at 275 nm, followed by full transparency in the visible and near infrared spectral regions. The optical bandgap gathered from the absorption coefficient is direct with a value of about 4.6 eV, close to that of β-Ga2O3. Additionally, with a lattice constant of a = 8.3336 Å, ZnGa2O4 may serve as a good lattice-matched substrate for magnetic Fe-based spinel films.
  • Item
    Interface polarization model for a 2-dimensional electron gas at the BaSnO3/LaInO3 interface
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Kim, Young Mo; Markurt, T.; Kim, Youjung; Zupancic, M.; Shin, Juyeon; Albrecht, M.; Char, Kookrin
    In order to explain the experimental sheet carrier density n2D at the interface of BaSnO3/LaInO3, we consider a model that is based on the presence of interface polarization in LaInO3 which extends over 2 pseudocubic unit cells from the interface and eventually disappears in the next 2 unit cells. Considering such interface polarization in calculations based on 1D Poisson-Schrödinger equations, we consistently explain the dependence of the sheet carrier density of BaSnO3/LaInO3 heterinterfaces on the thickness of the LaInO3 layer and the La doping of the BaSnO3 layer. Our model is supported by a quantitative analysis of atomic position obtained from high resolution transmission electron microscopy which evidences suppression of the octahedral tilt and a vertical lattice expansion in LaInO3 over 2–3 pseudocubic unit cells at the coherently strained interface.
  • Item
    Crystal structure of samarium-strontium-calcium orthoaluminotantalate, (Sm0.40Sr0.50Ca0.10)(Al0.70Ta 0.30)O3
    (Berlin : de Gruyter, 2010) Gesing, T.M.; Uecker, R.; Zheng, W.; Buhl, J.-C.
    Al2.90Ca0.45O12Sm 1.59Sr2Ta1.10, tetragonal, I4 (no. 82), a = 5.4174(8) Å, c = 7.643(2) Å, V = 224.3 Å3, Z = 1, Rgt(F) = 0.039, wRref(F 2) = 0.1258 , T = 298 K. © 2014 Oldenbourg Wissenschaftsverlag, München.
  • Item
    Electromechanical losses in carbon- and oxygen-containing bulk AlN single crystals
    (Amsterdam [u.a.] : Elsevier Science, 2019) Kogut, Iurii; Hartmann, Carsten; Gamov, Ivan; Suhak, Yuriy; Schulz, Michal; Schröder, Sebastian; Wollweber, Jürgen; Dittmar, Andrea; Irmscher, Klaus; Straubinger, Thomas; Bickermann, Matthias; Fritze, Holger
    Bulk single-crystalline aluminum nitride (AlN) is potentially a key component for low-loss high-temperature piezoelectric devices. However, the incorporation of electrically active impurities and defects during growth of AlN may adversely affect the performance of piezoelectric resonators especially at high temperatures. The electrical conductivity and electromechanical losses in bulk AlN single crystals are analyzed in the temperature range of 300–1200 K with respect to various contents of growth-related impurities in them. For AlN with [O]/[C] ≤ 1, an increase of electrical conductivity due to thermal activation of charge carriers in the temperature range of 850–1200 K has been observed and was determined to be a major contribution to electromechanical losses Q−1 rising up to maximum values of about 10−3 at 1200 K. As the oxygen content in AlN increased, the magnitude and the activation energy of high-temperature electrical conductivity increased. In oxygen-dominated AlN, two major thermally activated contributions to electromechanical losses were observed, namely, the anelastic relaxations of point defects at temperatures of 400–800 K and electrical conductivity at T > 800 K.
  • Item
    Transport Properties and Finite Size Effects in β-Ga2O3 Thin Films
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Ahrling, Robin; Boy, Johannes; Handwerg, Martin; Chiatti, Olivio; Mitdank, Rüdiger; Wagner, Günter; Galazka, Zbigniew; Fischer, Saskia F.
    Thin films of the wide band gap semiconductor β-Ga2O3 have a high potential for applications in transparent electronics and high power devices. However, the role of interfaces remains to be explored. Here, we report on fundamental limits of transport properties in thin films. The conductivities, Hall densities and mobilities in thin homoepitaxially MOVPE grown (100)-orientated β-Ga2O3 films were measured as a function of temperature and film thickness. At room temperature, the electron mobilities ((115 ± 10) cm2/Vs) in thicker films (>150 nm) are comparable to the best of bulk. However, the mobility is strongly reduced by more than two orders of magnitude with decreasing film thickness ((5.5 ± 0.5) cm2/Vs for a 28 nm thin film). We find that the commonly applied classical Fuchs-Sondheimer model does not explain sufficiently the contribution of electron scattering at the film surfaces. Instead, by applying an electron wave model by Bergmann, a contribution to the mobility suppression due to the large de Broglie wavelength in β-Ga2O3 is proposed as a limiting quantum mechanical size effect.
  • Item
    REScO3 Substrates—Purveyors of Strain Engineering
    (Weinheim : Wiley-VCH, 2019) Klimm, Detlef; Guguschev, Christo; Ganschow, Steffen; Bickermann, Matthias; Schlom, Darrell G.
    The thermodynamic and crystallographic background for the development of substrate crystals that are suitable for the epitaxial deposition of biaxially strained functional perovskite layers is reviewed. In such strained layers the elastic energy delivers an additional contribution to the Gibbs free energy, which allows the tuning of physical properties and phase transition temperatures to desired values. For some oxide systems metastable phases can even be accessed. Rare-earth scandates, REScO3, are well suited as substrate crystals because they combine mechanical and chemical stability in the epitaxy process with an adjustable range of pseudo-cubic lattice parameters in the 3.95 to 4.02 Ã… range. To further tune the lattice parameters, chemical substitution for the RE or Sc is possible. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Ferroelectric Self-Poling in GeTe Films and Crystals
    (Basel : MDPI, 2019) Kriegner, Dominik; Springholz, Gunther; Richter, Carsten; Pilet, Nicolas; Müller, Elisabeth; Capron, Marie; Berger, Helmut; Holý, Václav; Dil, J. Hugo; Krempaský, Juraj
    Ferroelectric materials are used in actuators or sensors because of their non-volatile macroscopic electric polarization. GeTe is the simplest known diatomic ferroelectric endowed with exceedingly complex physics related to its crystalline, amorphous, thermoelectric, and—fairly recently discovered—topological properties, making the material potentially interesting for spintronics applications. Typically, ferroelectric materials possess random oriented domains that need poling to achieve macroscopic polarization. By using X-ray absorption fine structure spectroscopy complemented with anomalous diffraction and piezo-response force microscopy, we investigated the bulk ferroelectric structure of GeTe crystals and thin films. Both feature multi-domain structures in the form of oblique domains for films and domain colonies inside crystals. Despite these multi-domain structures which are expected to randomize the polarization direction, our experimental results show that at room temperature there is a preferential ferroelectric order remarkably consistent with theoretical predictions from ideal GeTe crystals. This robust self-poled state has high piezoelectricity and additional poling reveals persistent memory effects. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Quasi-Transient Calculation of Czochralski Growth of Ge Crystals Using the Software Elmer
    (Basel : MDPI, 2019) Miller, Wolfram; Abrosimov, Nikolay; Fischer, Jörg; Gybin, Alexander; Juda, Uta; Kayser, Stefan; Janicskó-Csáthy, Jószef
    A numerical scheme was developed to compute the thermal and stress fields of the Czochralski process in a quasi-time dependent mode. The growth velocity was computed from the geometrical changes in melt and crystal due to pulling for every stage, for which the thermal and stress fields were computed by using the open source software Elmer. The method was applied to the Czochralski growth of Ge crystals by inductive heating. From a series of growth experiments, we chose one as a reference to check the validity of the scheme with respect to this Czochralski process. A good agreement both for the shapes of the melt/crystal interface at various time steps and the change in power consumption with process time was observed. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Growth and Properties of Intentionally Carbon-Doped GaN Layers
    (Weinheim : Wiley-VCH, 2019) Richter, Eberhard; Beyer, Franziska C.; Zimmermann, Friederike; Gärtner, Günter; Irmscher, Klaus; Gamov, Ivan; Heitmann, Johannes; Weyers, Markus; Tränkle, Günther
    Carbon-doping of GaN layers with thickness in the mm-range is performed by hydride vapor phase epitaxy. Characterization by optical and electrical measurements reveals semi-insulating behavior with a maximum of specific resistivity of 2 × 1010 Ω cm at room temperature found for a carbon concentration of 8.8 × 1018 cm−3. For higher carbon levels up to 3.5 × 1019 cm−3, a slight increase of the conductivity is observed and related to self-compensation and passivation of the acceptor. The acceptor can be identified as CN with an electrical activation energy of 0.94 eV and partial passivation by interstitial hydrogen. In addition, two differently oriented tri-carbon defects, CN-a-CGa-a-CN and CN-a-CGa-c-CN, are identified which probably compensate about two-thirds of the carbon which is incorporated in excess of 2 × 1018 cm−3. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Saeedi, K.; Szech, M.; Dluhy, P.; Salvail, J.Z.; Morse, K.J.; Riemann, H.; Abrosimov, N.V.; Nötzel, N.; Litvinenko, K.L.; Murdin, B.N.; Thewalt, M.L.W.
    The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched 28Si.