Search Results

Now showing 1 - 10 of 68
  • Item
    Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Newland, Ben; Leupelt, Daniel; Zheng, Yu; Thomas, Laurent S.V.; Werner, Carsten; Steinhart, Martin; Wang, Wenxin
    Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers and various therapeutics.
  • Item
    Electromagnon excitation in cupric oxide measured by Fabry-Pérot enhanced terahertz Mueller matrix ellipsometry
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Knight, Sean; Prabhakaran, Dharmalingam; Binek, Christian; Schubert, Mathias
    Here we present the use of Fabry-Pérot enhanced terahertz (THz) Mueller matrix ellipsometry to measure an electromagnon excitation in monoclinic cupric oxide (CuO). As a magnetically induced ferroelectric multiferroic, CuO exhibits coupling between electric and magnetic order. This gives rise to special quasiparticle excitations at THz frequencies called electromagnons. In order to measure the electromagnons in CuO, we exploit single-crystal CuO as a THz Fabry-Pérot cavity to resonantly enhance the excitation’s signature. This enhancement technique enables the complex index of refraction to be extracted. We observe a peak in the absorption coefficient near 0.705 THz and 215 K, which corresponds to the electromagnon excitation. This absorption peak is observed along only one major polarizability axis in the monoclinic a–c plane. We show the excitation can be represented using the Lorentz oscillator model, and discuss how these Lorentz parameters evolve with temperature. Our findings are in excellent agreement with previous characterizations by THz time-domain spectroscopy (THz-TDS), which demonstrates the validity of this enhancement technique.
  • Item
    The sequence to hydrogenate coronene cations: A journey guided by magic numbers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Cazaux, Stéphanie; Boschman, Leon; Rougeau, Nathalie; Reitsma, Geert; Hoekstra, Ronnie; Teillet-Billy, Dominique; Morisset, Sabine; Spaans, Marco; Schlathölter, Thomas
    The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms attached, provides clues to understand that carbon in space is mostly aromatic and partially aliphatic in PAHs. PAH hydrogenation is fundamental to assess the contribution of PAHs to the formation of cosmic H2.
  • Item
    Intercomparison of in-situ aircraft and satellite aerosol measurements in the stratosphere
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Sandvik, Oscar S.; Friberg, Johan; Martinsson, Bengt G.; van Velthoven, Peter F. J.; Hermann, Markus; Zahn, Andreas
    Aerosol composition and optical scattering from particles in the lowermost stratosphere (LMS) have been studied by comparing in-situ aerosol samples from the IAGOS-CARIBIC passenger aircraft with vertical profiles of aerosol backscattering obtained from the CALIOP lidar aboard the CALIPSO satellite. Concentrations of the dominating fractions of the stratospheric aerosol, being sulphur and carbon, have been obtained from post-flight analysis of IAGOS-CARIBIC aerosol samples. This information together with literature data on black carbon concentrations were used to calculate the aerosol backscattering which subsequently is compared with measurements by CALIOP. Vertical optical profiles were taken in an altitude range of several kilometres from and above the northern hemispheric extratropical tropopause for the years 2006-2014. We find that the two vastly different measurement platforms yield different aerosol backscattering, especially close to the tropopause where the influence from tropospheric aerosol is strong. The best agreement is found when the LMS is affected by volcanism, i.e., at elevated aerosol loadings. At background conditions, best agreement is obtained some distance (>2 km) above the tropopause in winter and spring, i.e., at likewise elevated aerosol loadings from subsiding aerosol-rich stratospheric air. This is to our knowledge the first time the CALIPSO lidar measurements have been compared to in-situ long-term aerosol measurements. © 2019, The Author(s).
  • Item
    Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Träber, N.; Uhlmann, K.; Girardo, S.; Kesavan, G.; Wagner, K.; Friedrichs, J.; Goswami, R.; Bai, K.; Brand, M.; Werner, C.; Balzani, D.; Guck, J.
    Mechanical stress exerted and experienced by cells during tissue morphogenesis and organ formation plays an important role in embryonic development. While techniques to quantify mechanical stresses in vitro are available, few methods exist for studying stresses in living organisms. Here, we describe and characterize cell-like polyacrylamide (PAAm) bead sensors with well-defined elastic properties and size for in vivo quantification of cell-scale stresses. The beads were injected into developing zebrafish embryos and their deformations were computationally analyzed to delineate spatio-temporal local acting stresses. With this computational analysis-based cell-scale stress sensing (COMPAX) we are able to detect pulsatile pressure propagation in the developing neural rod potentially originating from polarized midline cell divisions and continuous tissue flow. COMPAX is expected to provide novel spatio-temporal insight into developmental processes at the local tissue level and to facilitate quantitative investigation and a better understanding of morphogenetic processes. © 2019, The Author(s).
  • Item
    Interface polarization model for a 2-dimensional electron gas at the BaSnO3/LaInO3 interface
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Kim, Young Mo; Markurt, T.; Kim, Youjung; Zupancic, M.; Shin, Juyeon; Albrecht, M.; Char, Kookrin
    In order to explain the experimental sheet carrier density n2D at the interface of BaSnO3/LaInO3, we consider a model that is based on the presence of interface polarization in LaInO3 which extends over 2 pseudocubic unit cells from the interface and eventually disappears in the next 2 unit cells. Considering such interface polarization in calculations based on 1D Poisson-Schrödinger equations, we consistently explain the dependence of the sheet carrier density of BaSnO3/LaInO3 heterinterfaces on the thickness of the LaInO3 layer and the La doping of the BaSnO3 layer. Our model is supported by a quantitative analysis of atomic position obtained from high resolution transmission electron microscopy which evidences suppression of the octahedral tilt and a vertical lattice expansion in LaInO3 over 2–3 pseudocubic unit cells at the coherently strained interface.
  • Item
    Non-synchronization of lattice and carrier temperatures in light-emitting diodes
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Zhang, Jihong; Shih, Tienmo; Lu, Yijun; Merlitz, Holger; Chang, Richard Ru-Gin; Chen, Zhong
    Pulse implementation or switching-off (PISO) of electrical currents has become a common operation in junction-temperature (Tj) measurements for semiconductor devices since 2004. Here we have experimentally discovered a substantial discrepancy between Tj values with and without, PISO (e.g., 36.8 °C versus 76.5 °C above the ambient temperature at 25.0 °C). Our research indicates that methods associated with PISO are flawed due to non-synchronization of lattice temperatures and carrier temperatures in transient states. To scrutinize this discrepancy, we propose a lattice-inertia thermal anchoring mechanism that (1) explains the cause of this discrepancy, (2) helps to develop a remedy to eliminate this discrepancy by identifying three transient phases, (3) has been applied to establishing an original, accurate and noninvasive technique for light-emitting diodes to measure Tj in the absence of PISO. Our finding may pave the foundation for LED communities to further establish reliable junction-temperature measurements based on the identified mechanism.
  • Item
    Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A.; Wondraczek, Lothar
    We report on the magneto-optical (MO) properties of heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb3+ ion concentration of up to 9.7 × 1021 cm−3, the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400–1500 nm is found for a Tb3+ concentration of ~6.5 × 1021 cm−3. For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb3+ photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10−21 cm2 for ~ 5.0 × 1021 cm−3 Tb3+. This results in an optical gain parameter σem*τ of ~2.5 × 10−24 cm2s, what could be of interest for implementation of a Tb3+ fiber laser.
  • Item
    Simulations of Protein Adsorption on Nanostructured Surfaces
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Manzi, Berardo M.; Werner, Marco; Ivanova, Elena P.; Crawford, Russell J.; Baulin, Vladimir A.
    Recent technological advances have allowed the development of a new generation of nanostructured materials, such as those displaying both mechano-bactericidal activity and substrata that favor the growth of mammalian cells. Nanomaterials that come into contact with biological media such as blood first interact with proteins, hence understanding the process of adsorption of proteins onto these surfaces is highly important. The Random Sequential Adsorption (RSA) model for protein adsorption on flat surfaces was modified to account for nanostructured surfaces. Phenomena related to the nanofeature geometry have been revealed during the modelling process; e.g., convex geometries can lead to lower steric hindrance between particles, and hence higher degrees of surface coverage per unit area. These properties become more pronounced when a decrease in the size mismatch between the proteins and the surface nanostructures occurs. This model has been used to analyse the adsorption of human serum albumin (HSA) on a nano-structured black silicon (bSi) surface. This allowed the Blocking Function (the rate of adsorption) to be evaluated. The probability of the protein to adsorb as a function of the occupancy was also calculated.
  • Item
    Transport Properties and Finite Size Effects in β-Ga2O3 Thin Films
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Ahrling, Robin; Boy, Johannes; Handwerg, Martin; Chiatti, Olivio; Mitdank, Rüdiger; Wagner, Günter; Galazka, Zbigniew; Fischer, Saskia F.
    Thin films of the wide band gap semiconductor β-Ga2O3 have a high potential for applications in transparent electronics and high power devices. However, the role of interfaces remains to be explored. Here, we report on fundamental limits of transport properties in thin films. The conductivities, Hall densities and mobilities in thin homoepitaxially MOVPE grown (100)-orientated β-Ga2O3 films were measured as a function of temperature and film thickness. At room temperature, the electron mobilities ((115 ± 10) cm2/Vs) in thicker films (>150 nm) are comparable to the best of bulk. However, the mobility is strongly reduced by more than two orders of magnitude with decreasing film thickness ((5.5 ± 0.5) cm2/Vs for a 28 nm thin film). We find that the commonly applied classical Fuchs-Sondheimer model does not explain sufficiently the contribution of electron scattering at the film surfaces. Instead, by applying an electron wave model by Bergmann, a contribution to the mobility suppression due to the large de Broglie wavelength in β-Ga2O3 is proposed as a limiting quantum mechanical size effect.