Search Results

Now showing 1 - 1 of 1
  • Item
    Topology optimization subject to additive manufacturing constraints
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Ebeling-Rump, Moritz; Hömberg, Dietmar; Lasarzik, Robert; Petzold, Thomas
    In Topology Optimization the goal is to find the ideal material distribution in a domain subject to external forces. The structure is optimal if it has the highest possible stiffness. A volume constraint ensures filigree structures, which are regulated via a Ginzburg-Landau term. During 3D Printing overhangs lead to instabilities, which have only been tackled unsatisfactorily. The novel idea is to incorporate an Additive Manufacturing Constraint into the phase field method. A rigorous analysis proves the existence of a solution and leads to first order necessary optimality conditions. With an Allen-Cahn interface propagation the optimization problem is solved iteratively. At a low computational cost the Additive Manufacturing Constraint brings about support structures, which can be fine tuned according to engineering demands. Stability during 3D Printing is assured, which solves a common Additive Manufacturing problem.