Search Results

Now showing 1 - 10 of 90
Loading...
Thumbnail Image
Item

Quantum diffusion

2015, Knowles, Antti

If you place a drop of ink into a glass of water, the ink will slowly dissipate into the surrounding water until it is perfectly mixed. If you record your experiment with a camera and play the film backwards, you will see something that is never observed in the real world. Such diffusive and irreversible behaviour is ubiquitous in nature. Nevertheless, the fundamental equations that describe the motion of individual particles – Newton’s and Schrödinger’s equations – are reversible in time: a film depicting the motion of just a few particles looks as realistic when played forwards as when played backwards. In this snapshot, we discuss how one may try to understand the origin of diffusion starting from the fundamental laws of quantum mechanics.

Loading...
Thumbnail Image
Item

Prony’s method: an old trick for new problems

2018, Sauer, Tomas

In 1795, French mathematician Gaspard de Prony invented an ingenious trick to solve a recovery problem, aiming at reconstructing functions from their values at given points, which arose from a specific application in physical chemistry. His technique became later useful in many different areas, such as signal processing, and it relates to the concept of sparsity that gained a lot of well-deserved attention recently. Prony’s contribution, therefore, has developed into a very modern mathematical concept.

Loading...
Thumbnail Image
Item

Formation Control and Rigidity Theory

2019, Zelazo, Daniel, Zhao, Shiyu

Formation control is one of the fundamental coordination tasks for teams of autonomous vehicles. Autonomous formations are used in applications ranging from search-and-rescue operations to deep space exploration, with benefits including increased robustness to failures and risk mitigation for human operators. The challenge of formation control is to develop distributed control strategies using vehicle onboard sensing that ensures the desired formation is obtained. This snapshot describes how the mathematical theory of rigidity has emerged as an important tool in the study of formation control problems.

Loading...
Thumbnail Image
Item

Configuration spaces and braid groups

2019, Jiménez Rolland, Rita, Xicoténcatl, Miguel A.

In this snapshot we introduce configuration spaces and explain how a mathematician studies their ‘shape’. This will lead us to consider paths of configurations and braid groups, and to explore how algebraic properties of these groups determine features of the spaces.

Loading...
Thumbnail Image
Item

Towards a Mathematical Theory of Turbulence in Fluids

2016, Bedrossian, Jacob

Fluid mechanics is the theory of how liquids and gases move around. For the most part, the basic physics are well understood and the mathematical models look relatively simple. Despite this, fluids display a dazzling mystery to their motion. The random-looking, chaotic behavior of fluids is known as turbulence, and it lies far beyond our mathematical understanding, despite a century of intense research.

Loading...
Thumbnail Image
Item

Tropical geometry

2018, Brugallé, Erwan, Itenberg, Ilia, Shaw, Kristin, Viro, Oleg

What kind of strange spaces hide behind the enigmatic name of tropical geometry? In the tropics, just as in other geometries, one of the simplest objects is a line. Therefore, we begin our exploration by considering tropical lines. Afterwards, we take a look at tropical arithmetic and algebra, and describe how to define tropical curves using tropical polynomials.

Loading...
Thumbnail Image
Item

How to choose a winner: the mathematics of social choice

2015, Powers, Victoria Ann

Suppose a group of individuals wish to choose among several options, for example electing one of several candidates to a political office or choosing the best contestant in a skating competition. The group might ask: what is the best method for choosing a winner, in the sense that it best reflects the individual preferences of the group members? We will see some examples showing that many voting methods in use around the world can lead to paradoxes and bad outcomes, and we will look at a mathematical model of group decision making. We will discuss Arrow’s impossibility theorem, which says that if there are more than two choices, there is, in a very precise sense, no good method for choosing a winner.

Loading...
Thumbnail Image
Item

Operator theory and the singular value decomposition

2014, Knese, Greg

This is a snapshot about operator theory and one of its fundamental tools: the singular value decomposition (SVD). The SVD breaks up linear transformations into simpler mappings, thus unveiling their geometric properties. This tool has become important in many areas of applied mathematics for its ability to organize information. We discuss the SVD in the concrete situation of linear transformations of the plane (such as rotations, reflections, etc.).

Loading...
Thumbnail Image
Item

Footballs and donuts in four dimensions

2016, Klee, Steven

In this snapshot, we explore connections between the mathematical areas of counting and geometry by studying objects called simplicial complexes. We begin by exploring many familiar objects in our three dimensional world and then discuss the ways one may generalize these ideas into higher dimensions.

Loading...
Thumbnail Image
Item

Random sampling of domino and lozenge tilings

2016, Fusy, Éric

A grid region is (roughly speaking) a collection of “elementary cells” (squares, for example, or triangles) in the plane. One can “tile” these grid regions by arranging the cells in pairs. In this snapshot we review different strategies to generate random tilings of large grid regions in the plane. This makes it possible to observe the behaviour of large random tilings, in particular the occurrence of boundary phenomena that have been the subject of intensive recent research.