Search Results

Now showing 1 - 6 of 6
  • Item
    Generation of crystal-structure transverse patterns via a self-frequency-doubling laser
    (London : Nature Publishing Group, 2013) Yu, H.; Zhang, H.; Wang, Y.; Wang, Z.; Wang, J.; Petrov, V.
    Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories.
  • Item
    Excited-state relaxation of hydrated thymine and thymidine measured by liquid-jet photoelectron spectroscopy: experiment and simulation
    (Washington, DC : ACS Publications, 2015) Buchner, Franziska; Nakayama, Akira; Yamazaki, Shohei; Ritze, Hans-Hermann; Lübcke, Andrea
    Time-resolved photoelectron spectroscopy is performed on thymine and thymidine in aqueous solution to study the excited-state relaxation dynamics of these molecules. We find two contributions with sub-ps lifetimes in line with recent excited-state QM/MM molecular dynamics simulations (J. Chem. Phys.2013, 139, 214304). The temporal evolution of ionization energies for the excited ππ* state along the QM/MM molecular dynamics trajectories were calculated and are compatible with experimental results, where the two contributions correspond to the relaxation paths in the ππ* state involving different conical intersections with the ground state. Theoretical calculations also show that ionization from the nπ* state is possible at the given photon energies, but we have not found any experimental indication for signal from the nπ* state. In contrast to currently accepted relaxation mechanisms, we suggest that the nπ* state is not involved in the relaxation process of thymine in aqueous solution.
  • Item
    Femtosecond stimulated Raman spectroscopy of the cyclobutane thymine dimer repair mechanism: A computational study
    (Washington, DC : American Chemical Society, 2014) Ando, H.; Fingerhut, B.P.; Dorfman, K.E.; Biggs, J.D.; Mukamel, S.
    Cyclobutane thymine dimer, one of the major lesions in DNA formed by exposure to UV sunlight, is repaired in a photoreactivation process, which is essential to maintain life. The molecular mechanism of the central step, i.e., intradimer C-C bond splitting, still remains an open question. In a simulation study, we demonstrate how the time evolution of characteristic marker bands (C=O and C=C/C-C stretch vibrations) of cyclobutane thymine dimer and thymine dinucleotide radical anion, thymidylyl(3′→5′)-thymidine, can be directly probed with femtosecond stimulated Raman spectroscopy (FSRS). We construct a DFT(M05-2X) potential energy surface with two minor barriers for the intradimer C5-C′5 splitting and a main barrier for the C6-C′6 splitting, and identify the appearance of two C5=C6 stretch vibrations due to the C6-C′6 splitting as a spectroscopic signature of the underlying bond splitting mechanism. The sequential mechanism shows only absorptive features in the simulated FSRS signals, whereas the fast concerted mechanism shows characteristic dispersive line shapes. (Figure Presented).
  • Item
    Competition between excited state proton and OH- transport via a short water wire: Solvent effects open the gate
    (London [u.a.] : Royal Society of Chemistry, 2014) Bekçioǧlu, G.; Allolio, C.; Ekimova, M.; Nibbering, E.T.J.; Sebastiani, D.
    We investigate the acid-base proton exchange reaction in a microsolvated bifunctional chromophore by means of quantum chemical calculations. The UV/vis spectroscopy shows that equilibrium of the keto-and enol-forms in the electronic ground state is shifted to the keto conformation in the excited state. A previously unknown mechanism involving a hydroxide ion transport along a short water wire is characterized energetically, which turns out to be competitive with the commonly assumed proton transport. Both mechanisms are shown to have a concerted character, as opposed to a step-wise mechanism. The alternative mechanism of a hydrogen atom transport is critically examined, and evidence for strong solvent dependence is presented. Specifically, we observe electrostatic destabilization of the corresponding πσ* state by the aqueous solvent. As a consequence, no conical intersections are found along the reaction pathway.
  • Item
    Time-resolved photoelectron spectroscopy of adenine and adenosine in aqueous solution
    (London [u.a.] : Royal Society of Chemistry, 2013) Buchner, F.; Ritze, H.-H.; Lahl, J.; Lübcke, A.
    Time-resolved photoelectron spectroscopy is applied to study the excited state dynamics of the DNA base adenine and its ribonucleoside adenosine in aqueous solution for pump and probe photon energies in the range between 4.66 eV and 5.21 eV. We follow the evolution of the prepared excited state on the potential energy surface and retrieve lifetimes of the S1 state under different excitation conditions.
  • Item
    XUV excitation followed by ultrafast non-adiabatic relaxation in PAH molecules as a femto-astrochemistry experiment
    ([London] : Nature Publishing Group UK, 2015) Marciniak, A.; Despré, V.; Barillot, T.; Rouzée, A.; Galbraith, M.C.E.; Klei, J.; Yang, C.-H.; Smeenk, C.T.L.; Loriot, V.; Nagaprasad Reddy, S.; Tielens, A.G.G.M.; Mahapatra, S.; Kuleff, A.I.; Vrakking, M.J.J.; Lépine, F.
    Highly excited molecular species are at play in the chemistry of interstellar media and are involved in the creation of radiation damage in a biological tissue. Recently developed ultrashort extreme ultraviolet light sources offer the high excitation energies and ultrafast time-resolution required for probing the dynamics of highly excited molecular states on femtosecond (fs) (1 fs=10−15s) and even attosecond (as) (1 as=10−18 s) timescales. Here we show that polycyclic aromatic hydrocarbons (PAHs) undergo ultrafast relaxation on a few tens of femtoseconds timescales, involving an interplay between the electronic and vibrational degrees of freedom. Our work reveals a general property of excited radical PAHs that can help to elucidate the assignment of diffuse interstellar absorption bands in astrochemistry, and provides a benchmark for the manner in which coupled electronic and nuclear dynamics determines reaction pathways in large molecules following extreme ultraviolet excitation.