Search Results

Now showing 1 - 10 of 426
  • Item
    Effects of Climate Change on the Hydrological Cycle in Central and Eastern Europe
    (Dordrecht : Springer, 2014) Stagl, J.; Mayr, E.; Koch, H.; Hattermann, F.F.; Huang, S.
    For the management of protected areas knowledge about the water regime plays a very important role, in particular in areas with lakes, wetlands, marches or floodplains. The local hydrological conditions depend widely on temporal and spatial variations of the main components of the hydrologic cycle and physiographic conditions on site. To preserve a favourable conservation status under changing climatic conditions park managers require information about potential impacts of climate change in their area. The following chapter provides an overview of how climate change affects the hydrological regimes in Central and Eastern Europe. The hydrological impacts for the protected areas are area-specific and vary from region to region. Generally, an increase in temperature enhances the moisture holding capacity of the atmosphere and thus, leads to an intensification of the hydrological cycle. Key changes in the hydrological system include alterations in the seasonal distribution, magnitude and duration of precipitation and evapotranspiration. This may lead to changes in the water storage, surface runoff, soil moisture and seasonal snow packs as well as to modifications in the mass balance of Central European glaciers. Partly, water resources management can help to counterbalance effects of climate change on stream flow and water availability.
  • Item
    Diurnal variation of midlatitudinal NO3 column abundance over table mountain facility, California
    (Göttingen : Copernicus GmbH, 2011) Chen, C.M.; Cageao, R.P.; Lawrence, L.; Stutz, J.; Salawitch, R.J.; Jourdain, L.; Li, Q.; Sander, S.P.
    The column abundance of NO3 was measured over Table Mountain Facility, CA (34.4° 117.7° W) from May 2003 through September 2004, using lunar occultation near full moon with a grating spectrometer. The NO 3 column retrieval was performed with the differential optical absorption spectroscopy (DOAS) technique using both the 623 and 662 nm NO 3 absorption bands. Other spectral features such as Fraunhofer lines and absorption from water vapor and oxygen were removed using solar spectra obtained at different airmass factors. We observed a seasonal variation, with nocturnally averaged NO3 columns between 5-7 × 1013 molec cm-2 during October through March, and 5-22 × 10 13 molec cm-2 during April through September. A subset of the data, with diurnal variability vastly different from the temporal profile obtained from one-dimensional stratospheric model calculations, clearly has boundary layer contributions; this was confirmed by simultaneous long-path DOAS measurements. However, even the NO3 columns that did follow the modeled time evolution were often much larger than modeled stratospheric partial columns constrained by realistic temperatures and ozone concentrations. This discrepancy is attributed to substantial tropospheric NO3 in the free troposphere, which may have the same time dependence as stratospheric NO 3.
  • Item
    Near-ubiquity of ice-edge blooms in the Arctic
    (Göttingen : Copernicus GmbH, 2011) Perrette, M.; Yool, A.; Quartly, G.D.; Popova, E.E.
    Ice-edge blooms are significant features of Arctic primary production, yet have received relatively little attention. Here we combine satellite ocean colour and sea-ice data in a pan-Arctic study. Ice-edge blooms occur in all seasonally ice-covered areas and from spring to late summer, being observed in 77-89% of locations for which adequate data exist, and usually peaking within 20 days of ice retreat. They sometimes form long belts along the ice-edge (greater than 100 km), although smaller structures were also found. The bloom peak is on average more than 1 mg m-3, with major blooms more than 10 mg m -3, and is usually located close to the ice-edge, though not always. Some propagate behind the receding ice-edge over hundreds of kilometres and over several months, while others remain stationary. The strong connection between ice retreat and productivity suggests that the ongoing changes in Arctic sea-ice may have a significant impact on higher trophic levels and local fish stocks.
  • Item
    Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability
    (Amsterdam : Elsevier, 2017) Hempel, Sabrina; König, Marcel; Menz, Christoph; Janke, David; Amon, Barbara; Banhazi, Thomas M.; Estellés, Fernando; Amon, Thomas
    The microclimatic conditions in dairy buildings affect animal welfare and gaseous emissions. Measurements are highly variable due to the inhomogeneous distribution of heat and humidity sources (related to farm management) and the turbulent inflow (associated with meteorologic boundary conditions). The selection of the measurement strategy (number and position of the sensors) and the analysis methodology adds to the uncertainty of the applied measurement technique. To assess the suitability of different sensor positions, in situations where monitoring in the direct vicinity of the animals is not possible, we collected long-term data in two naturally ventilated dairy barns in Germany between March 2015 and April 2016 (horizontal and vertical profiles with 10 to 5 min temporal resolution). Uncertainties related to the measurement setup were assessed by comparing the device outputs under lab conditions after the on-farm experiments. We found out that the uncertainty in measurements of relative humidity is of particular importance when assessing heat stress risk and resulting economic losses in terms of temperature-humidity index. Measurements at a height of approximately 3 m–3.5 m turned out to be a good approximation for the microclimatic conditions in the animal occupied zone (including the air volume close to the emission active zone). However, further investigation along this cross-section is required to reduce uncertainties related to the inhomogeneous distribution of humidity. In addition, a regular sound cleaning (and if possible recalibration after few months) of the measurement devices is crucial to reduce the instrumentation uncertainty in long-term monitoring of relative humidity in dairy barns. © 2017 The Authors
  • Item
    Consecutive extreme flooding and heat wave in Japan: Are they becoming a norm?
    (Hoboken, NJ : Wiley, 2019) Wang, Simon S.-Y.; Kim, Hyungjun; Coumou, Dim; Yoon, Jin-Ho; Zhao, Lin; Gillies, Robert R.
    [No abstract available]
  • Item
    The Smithsonian solar constant data revisited: No evidence for a strong effect of solar activity in ground-based insolation data
    (Göttingen : Copernicus GmbH, 2011) Feulner, G.
    Apparent evidence for a strong signature of solar activity in ground-based insolation data was recently reported. In particular, a strong increase of the irradiance of the direct solar beam with sunspot number as well as a decline of the brightness of the solar aureole and the measured precipitable water content of the atmosphere with solar activity were presented. The latter effect was interpreted as evidence for cosmic-ray-induced aerosol formation. Here I show that these spurious results are due to a failure to correct for seasonal variations and the effects of volcanic eruptions and local pollution in the data. After correcting for these biases, neither the atmospheric water content nor the brightness of the solar aureole show any significant change with solar activity, and the variations of the solar-beam irradiance with sunspot number are in agreement with previous estimates. Hence there is no evidence for the influence of solar activity on the climate being stronger than currently thought.
  • Item
    Natural streamflow simulation for two largest river basins in Poland: A baseline for identification of flow alterations
    (Göttingen : Copernicus, 2016) Piniewski, Mikołaj; Cudennec, Christophe
    The objective of this study was to apply a previously developed large-scale and high-resolution SWAT model of the Vistula and the Odra basins, calibrated with the focus of natural flow simulation, in order to assess the impact of three different dam reservoirs on streamflow using the Indicators of Hydrologic Alteration (IHA). A tailored spatial calibration approach was designed, in which calibration was focused on a large set of relatively small non-nested sub-catchments with semi-natural flow regime. These were classified into calibration clusters based on the flow statistics similarity. After performing calibration and validation that gave overall positive results, the calibrated parameter values were transferred to the remaining part of the basins using an approach based on hydrological similarity of donor and target catchments. The calibrated model was applied in three case studies with the purpose of assessing the effect of dam reservoirs (Włocławek, Siemianówka and Czorsztyn Reservoirs) on streamflow alteration. Both the assessment based on gauged streamflow (Before-After design) and the one based on simulated natural streamflow showed large alterations in selected flow statistics related to magnitude, duration, high and low flow pulses and rate of change. Some benefits of using a large-scale and high-resolution hydrological model for the assessment of streamflow alteration include: (1) providing an alternative or complementary approach to the classical Before-After designs, (2) isolating the climate variability effect from the dam (or any other source of alteration) effect, (3) providing a practical tool that can be applied at a range of spatial scales over large area such as a country, in a uniform way. Thus, presented approach can be applied for designing more natural flow regimes, which is crucial for river and floodplain ecosystem restoration in the context of the European Union's policy on environmental flows.
  • Item
    Climate Change in Central and Eastern Europe
    (Dordrecht : Springer, 2014) Anders, I.; Stagl, J.; Auer, I.; Pavlik, D.
    Climate change is affecting many fields of the society, policy, economy and environment. Information on changes in the climate during the last centuries and especially in near and far future is essential. Estimation and quantification of changes in climate variables and indices are a necessary precondition for adaptation and mitigation measures. This chapter gives an overview on measures, observations as well as dynamical models, which are available to estimate changes in the past and the present climate as well as for a possible future climate. It summarises the state of knowledge according to the climate change signal in Central and Eastern Europe. Moreover it identifies the limitations and uncertainties of the measures and the derived information.
  • Item
    Climate Change Impact Modelling Cascade – Benefits and Limitations for Conservation Management
    (Dordrecht : Springer, 2014) Vohland, K.; Rannow, S.; Stagl, J.
    Model results can serve as a basis for adaptation in conservation management. They can help understanding the impact of climate change, and support the formulation of management measures. However, model results rely strongly on the quality and the resolution of the input data; they contain significant uncertainties and need to be interpreted in the context of the modelling assumptions. The perception of models and their results differs between disciplines as well as between science and practice. Part of this gap derives from the long ‘model cascade’ used for the assessment of climate related impacts on biodiversity. For this ‘model cascade’ model results from Global Climate Models are often used to drive Regional Downscaled Climate Models and are transferred to hydrological models or distribution models of plants and animals. In fact, most assessments of potential impacts of climate change on biodiversity rely on habitat modelling of plants and animals. But, only few decision makers are trained to analyse the different outcomes of climate impact modelling. If modelling is integrated into conservation management it must be based on an evaluation of the need for information in protected areas and an assessment of model use in the management process, so as to guarantee maximum usability.
  • Item
    Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model
    (Göttingen : Copernicus Publ., 2019) Braakhekke, Maarten C.; Doelman, Jonathan C.; Baas, Peter; Müller, Christoph; Schaphoff, Sibyll; Stehfest, Elke; van Vuuren, Detlef P.
    We present an extension of the dynamic global vegetation model, Lund-Potsdam-Jena Managed Land (LPJmL), to simulate planted forests intended for carbon (C) sequestration. We implemented three functional types to simulate plantation trees in temperate, tropical, and boreal climates. The parameters of these functional types were optimized to fit target growth curves (TGCs). These curves represent the evolution of stemwood C over time in typical productive plantations and were derived by combining field observations and LPJmL estimates for equivalent natural forests. While the calibrated model underestimates stemwood C growth rates compared to the TGCs, it represents substantial improvement over using natural forests to represent afforestation. Based on a simulation experiment in which we compared global natural forest versus global forest plantation, we found that forest plantations allow for much larger C uptake rates on the timescale of 100 years, with a maximum difference of a factor of 1.9, around 54 years. In subsequent simulations for an ambitious but realistic scenario in which 650Mha (14% of global managed land, 4.5% of global land surface) are converted to forest over 85 years, we found that natural forests take up 37PgC versus 48PgC for forest plantations. Comparing these results to estimations of C sequestration required to achieve the 2°C climate target, we conclude that afforestation can offer a substantial contribution to climate mitigation. Full evaluation of afforestation as a climate change mitigation strategy requires an integrated assessment which considers all relevant aspects, including costs, biodiversity, and trade-offs with other land-use types. Our extended version of LPJmL can contribute to such an assessment by providing improved estimates of C uptake rates by forest plantations. © 2019 American Institute of Physics Inc.. All rights reserved.