Search Results

Now showing 1 - 10 of 2602
  • Item
    Assessing the organic fraction of municipal solid wastes for the production of lactic acid
    (Amsterdam [u.a.] : Elsevier, 2019) López-Gómez, J. Pablo; Latorre-Sánchez, Marcos; Unger, Peter; Schneider, Roland; Coll Lozano, Caterina; Venus, Joachim
    With an estimated yearly production of about 140 Mt in the EU, conventionally, the organic fraction of municipal solid wastes (OFMSW) has been disposed in landfills with negative environmental effects. Nonetheless, the chemical composition of this residue make it a substrate with great bioconversion potential. In this study, OFMSW from Spanish municipal treatment plants, were evaluated for the production of LA. Samples were identified according to the sorting mechanisms employed for their collection in: (A) separately collected, (B) non-separately collected and (C) separately collected+paper/cardboard. Enzymatic hydrolysis was used to produce hydrolysates A, B and C accordingly. Hydrolysate A showed the highest total sugars and glucose content with values of 70 and 55 g·L−1, respectively. Following the characterisation, a screening showed that growth of B. coagulans was possible in all three hydrolysates. Furthermore, lab scale fermentations showed that LA final concentrations could reach around 60 g·L−1, with yields from total sugars of above 0.60 g·g−1. A technical scale fermentation of the hydrolysate A resulted in a final LA concentration of 60.7 g·L−1, a yield of 0.71 g·g−1 with a productivity of 2.68 g·L−1·h−1. Overall, it was estimated that 0.23 g of LA could be produced from one g of dry OFMSW.
  • Item
    Ultrafast OH-stretching frequency shifts of hydrogen-bonded 2-naphthol photoacid-base complexes in solution
    (Les Ulis : EDP Sciences, 2013) Prémont-Schwarz, M.; Xiao, D.; Sekharan, S.; Batista, V.S.; Nibbering, E.T.J.
    We characterize the transient solvent-dependent OH-stretching frequency shifts of photoacid 2-naphthol hydrogen-bonded with CH3CN in the S0- and S1-states using a combined experimental and theoretical approach, and disentangle specific hydrogen-bonding contributions from nonspecific dielectric response.
  • Item
    Ice-marginal forced regressive deltas in glacial lake basins: geomorphology, facies variability and large-scale depositional architecture
    (Oxford [u.a.] : Wiley-Blackwell, 2018) Winsemann, Jutta; Lang, Jörg; Polom, Ulrich; Loewer, Markus; Igel, Jan; Pollok, Lukas; Brandes, Christian
    This study presents a synthesis of the geomorphology, facies variability and depositional architecture of ice-marginal deltas affected by rapid lake-level change. The integration of digital elevation models, outcrop, borehole, ground-penetrating radar and high-resolution shear-wave seismic data allows for a comprehensive analysis of these delta systems and provides information about the distinct types of deltaic facies and geometries generated under different lake-level trends. The exposed delta sediments record mainly the phase of maximum lake level and subsequent lake drainage. The stair-stepped profiles of the delta systems reflect the progressive basinward lobe deposition during forced regression when the lakes successively drained. Depending on the rate and magnitude of lake-level fall, fan-shaped, lobate or more digitate tongue-like delta morphologies developed. Deposits of the stair-stepped transgressive delta bodies are buried, downlapped and onlapped by the younger forced regressive deposits. The delta styles comprise both Gilbert-type deltas and shoal-water deltas. The sedimentary facies of the steep Gilbert-type delta foresets include a wide range of gravity-flow deposits. Delta deposits of the forced-regressive phase are commonly dominated by coarse-grained debrisflow deposits, indicating strong upslope erosion and cannibalization of older delta deposits. Deposits of supercritical turbidity currents are particularly common in sand-rich Gilbert-type deltas that formed during slow rises in lake level and during highstands. Foreset beds consist typically of laterally and vertically stacked deposits of antidunes and cyclic steps. The trigger mechanisms for these supercritical turbidity currents were both hyperpycnal meltwater flows and slope-failure events. Shoal-water deltas formed at low water depths during both low rates of lake-level rise and forced regression. Deposition occurred from tractional flows. Transgressive mouthbars form laterally extensive sand-rich delta bodies with a digitate, multi-tongue morphology. In contrast, forced regressive gravelly shoal-water deltas show a high dispersion of flow directions and form laterally overlapping delta lobes. Deformation structures in the forced-regressive ice-marginal deltas are mainly extensional features, including normal faults, small graben or half-graben structures and shear-deformation bands, which are related to gravitational delta tectonics, postglacial faulting during glacial-isostatic adjustment, and crestal collapse above salt domes. A neotectonic component cannot be ruled out in some cases. © 2018 The Authors. Boreas published by John Wiley & Sons Ltd on behalf of The Boreas Collegium
  • Item
    Inferring causation from time series in Earth system sciences
    ([London] : Nature Publishing Group UK, 2019) Runge, Jakob; Bathiany, Sebastian; Bollt, Erik; Camps-Valls, Gustau; Coumou, Dim; Deyle, Ethan; Glymour, Clark; Kretschmer, Marlene; Mahecha, Miguel D.; Muñoz-Marí, Jordi; van Nes, Egbert H.; Peters, Jonas; Quax, Rick; Reichstein, Markus; Scheffer, Marten; Schölkopf, Bernhard; Spirtes, Peter; Sugihara, George; Sun, Jie; Zhang, Kun; Zscheischler, Jakob
    The heart of the scientific enterprise is a rational effort to understand the causes behind the phenomena we observe. In large-scale complex dynamical systems such as the Earth system, real experiments are rarely feasible. However, a rapidly increasing amount of observational and simulated data opens up the use of novel data-driven causal methods beyond the commonly adopted correlation techniques. Here, we give an overview of causal inference frameworks and identify promising generic application cases common in Earth system sciences and beyond. We discuss challenges and initiate the benchmark platform causeme.net to close the gap between method users and developers. © 2019, The Author(s).
  • Item
    Large-scale globally propagating coronal waves
    (Katlenburg-Lindau : MPS, 2015) Warmuth, Alexander
    Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the “classical” interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which “pseudo waves” are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.
  • Item
    Activation of murine immune cells upon co-culture with plasma-treated B16F10 melanoma cells
    (Basel : MDPI, 2019) Rödder, Katrin; Moritz, Juliane; Miller, Vandana; Weltmann, Klaus-Dieter; Metelmann, Hans-Robert; Gandhirajan, Rajesh; Bekeschus, Sander
    Recent advances in melanoma therapy increased median survival in patients. However, death rates are still high, motivating the need of novel avenues in melanoma treatment. Cold physical plasma expels a cocktail of reactive species that have been suggested for cancer treatment. High species concentrations can be used to exploit apoptotic redox signaling pathways in tumor cells. Moreover, an immune-stimulatory role of plasma treatment, as well as plasma-killed tumor cells, was recently proposed, but studies using primary immune cells are scarce. To this end, we investigated the role of plasma-treated murine B16F10 melanoma cells in modulating murine immune cells' activation and marker profile. Melanoma cells exposed to plasma showed reduced metabolic and migratory activity, and an increased release of danger signals (ATP, CXCL1). This led to an altered cytokine profile with interleukin-1β (IL-1β) and CCL4 being significantly increased in plasma-treated mono- and co-cultures with immune cells. In T cells, plasma-treated melanoma cells induced extracellular signal-regulated Kinase (ERK) phosphorylation and increased CD28 expression, suggesting their activation. In monocytes, CD115 expression was elevated as a marker for activation. In summary, here we provide proof of concept that plasma-killed tumor cells are recognized immunologically, and that plasma exerts stimulating effects on immune cells alone. © 2019 by the authors.
  • Item
    Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping
    (Weinheim : Wiley-VCH, 2019) Tondera, Christoph; Akbar, Teuku Fawzul; Thomas, Alvin Kuriakose; Lin, Weilin; Werner, Carsten; Busskamp, Volker; Zhang, Yixin; Minev, Ivan R.
    Electrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain-machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m-1 , stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in-scaffold polymerized poly(ethylene-3,4-diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue-mimetic neurostimulating electrodes.
  • Item
    Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise
    (Munich : EGU, 2012) Jørgensen, F.; Scheer, W.; Thomsen, S.; Sonnenborg, T.O.; Hinsby, K.; Wiederhold, H.; Schamper, C.; Burschil, T.; Roth, B.; Kirsch, R.; Auken, E.
    Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark, a combination of an airborne electromagnetic survey (performed with the SkyTEM system), a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m which gives a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt/freshwater boundary and the chemical status of groundwater. Although the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore are strongly influenced by the increased electrical conductivity there, buried valleys and other geological elements are still revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and their control on the groundwater salinity distribution is assessed.
  • Item
    Magnetization Dynamics of an Individual Single-Crystalline Fe-Filled Carbon Nanotube
    (Weinheim : Wiley-VCH, 2019) Lenz, Kilian; Narkowicz, Ryszard; Wagner, Kai; Reiche, Christopher F.; Körner, Julia; Schneider, Tobias; Kákay, Attila; Schultheiss, Helmut; Weissker, Uhland; Wolf, Daniel; Suter, Dieter; Büchner, Bernd; Fassbender, Jürgen; Mühl, Thomas; Lindner, Jürgen
    The magnetization dynamics of individual Fe-filled multiwall carbon-nanotubes (FeCNT), grown by chemical vapor deposition, are investigated by microresonator ferromagnetic resonance (FMR) and Brillouin light scattering (BLS) microscopy and corroborated by micromagnetic simulations. Currently, only static magnetometry measurements are available. They suggest that the FeCNTs consist of a single-crystalline Fe nanowire throughout the length. The number and structure of the FMR lines and the abrupt decay of the spin-wave transport seen in BLS indicate, however, that the Fe filling is not a single straight piece along the length. Therefore, a stepwise cutting procedure is applied in order to investigate the evolution of the ferromagnetic resonance lines as a function of the nanowire length. The results show that the FeCNT is indeed not homogeneous along the full length but is built from 300 to 400 nm long single-crystalline segments. These segments consist of magnetically high quality Fe nanowires with almost the bulk values of Fe and with a similar small damping in relation to thin films, promoting FeCNTs as appealing candidates for spin-wave transport in magnonic applications. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Effect of Alloying Elements in Melt Spun Mg-alloys for Hydrogen Storage
    (São Carlos : SciELO - Scientific Electronic Library Online, 2016) Rozenberg, Silvia; Saporiti, Fabiana; Lang, Julien; Audebert, Fernando; Botta, Pablo; Stoica, Mihai; Huot, Jacques; Eckert, Jürgen
    In this paper we report the effect of alloying elements on hydrogen storage properties of melt-spun Mg-based alloys. The base alloys Mg90Si10, Mg90Cu10, Mg65Cu35 (at%) were studied. We also investigated the effect of rare earths (using MM: mischmetal) and Al in Mg65Cu25Al10, Mg65Cu25MM10 and Mg65Cu10Al15MM10 alloys. All the melt-spun alloys without MM show a crystalline structure, and the Mg65Cu25MM10 and Mg65Cu10Al15MM10 alloys showed an amorphous and partially amorphous structure respectively. At 350˚C all the alloys had a crystalline structure during the hydrogen absorption-desorption tests. It was observed that Si and Cu in the binaries alloys hindered completely the activation of the hydrogen absorption. The partial substitution of Cu by MM or Al allowed activation. The combined substitution of Cu by MM and Al showed the best results with the fastest absorption and desorption kinetics, which suggests that this combination can be used for new Mg-alloys to improve hydrogen storage properties.