Search Results

Now showing 1 - 2 of 2
  • Item
    Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?
    (San Francisco, Ca. : PLOS, 2019) Germer, Sonja; Kleidon, Axel
    The planning of the energy transition from fossil fuels to renewables requires estimates for how much electricity wind turbines can generate from the prevailing atmospheric conditions. Here, we estimate monthly ideal wind energy generation from datasets of wind speeds, air density and installed wind turbines in Germany and compare these to reported actual yields. Both yields were used in a statistical model to identify and quantify factors that reduced actual compared to ideal yields. The installed capacity within the region had no significant influence. Turbine age and park size resulted in significant yield reductions. Predicted yields increased from 9.1 TWh/a in 2000 to 58.9 TWh/a in 2014 resulting from an increase in installed capacity from 5.7 GW to 37.6 GW, which agrees very well with reported estimates for Germany. The age effect, which includes turbine aging and possibly other external effects, lowered yields from 3.6 to 6.7% from 2000 to 2014. The effect of park size decreased annual yields by 1.9% throughout this period. However, actual monthly yields represent on average only 73.7% of the ideal yields, with unknown causes. We conclude that the combination of ideal yields predicted from wind conditions with observed yields is suitable to derive realistic estimates of wind energy generation as well as realistic resource potentials. © 2019 Germer, Kleidon. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • Item
    Quantity- and Quality-Based Farm Water Productivity in Wine Production: Case Studies in Germany
    (Basel : MDPI, 2017-2-1) Peth, Denise; Drastig, Katrin; Prochnow, Annette
    The German wine sector has encountered new challenges in water management recently. To manage water resources responsibly, it is necessary to understand the relationship between the input of water and the output of wine, in terms of quantity and quality. The objectives of this study are to examine water use at the farm scale at three German wineries in Rhenish Hesse, and to develop and apply, for the first time, a quality-based indicator. Water use is analyzed in terms of wine production and wine-making over three years. After the spatial and temporal boundaries of the wineries and the water flows are defined, the farm water productivity indicator is calculated to assess water use at the winery scale. Farm water productivity is calculated using the AgroHyd Farmmodel modeling software. Average productivity on a quantity basis is 3.91 L wine per m3 of water. Productivity on a quality basis is 329.24 Oechsle per m3 of water. Water input from transpiration for wine production accounts for 99.4%-99.7% of total water input in the wineries, and, because irrigation is not used, precipitation is the sole source of transpired water. Future studies should use both quality-based and mass-based indicators of productivity. © 2017 by the authors.