Search Results

Now showing 1 - 7 of 7
  • Item
    Towards hybrid one-pot/one-electrode Pd-NPs-based nanoreactors for modular biocatalysis
    (Amsterdam [u.a.] : Elsevier, 2021) Koch, M.; Apushkinskaya, N.; Zolotukhina, E.V.; Silina, Y.E.
    Here, fundamental aspects affecting template-assisted engineering of oxidase-associated peroxide oxidation co-catalysis of the modeled microanalytical system based on the hybrid palladium nanoparticles (Pd-NPs) with tailored functional properties were studied. By an accurate tuning and validation of the experimental setup, a modular Pd-NPs-doped one-pot/one-electrode amperometric nanobiosensor for advanced multiplex analyte detection was constructed. The specific operational conditions (electrochemical read-out mode, pH, regeneration procedure) of the modular one-pot/one-electrode nanobiosensor allowed a reliable sensing of L-lactate (with linear dynamic range, LDR = 500 µM – 2 mM, R2 = 0.977), D-glucose (with LDR = 200 µM – 50 mM, R2 = 0.987), hydrogen peroxide (with LDR = 20 µM – 100 mM, R2 = 0.998) and glutaraldehyde (with LDR = 1 – 100 mM, R2 = 0.971). In addition, mechanistic aspects influencing the performance of Pd-NPs-doped one-pot/one-electrode for multiplex analyte sensing were studied in detail. The designed one-pot/one-electrode amperometric nanobiosensor showed a thin layer electrochemical behavior that greatly enhanced electron transfer between the functional hybrid layer and the electrode. Finally, a specific regeneration procedure of the hybrid one-pot/one-electrode and algorithm towards its usage for modular biocatalysis were developed. The reported strategy can readily be considered as a guideline towards the fabrication of commercialized nanobiosensors with tailored properties for advanced modular biocatalysis.
  • Item
    Hybrid Dielectric Films of Inkjet-Printable Core-Shell Nanoparticles
    (Weinheim : Wiley-VCH, 2021) Buchheit, Roman; Kuttich, Björn; González-García, Lola; Kraus, Tobias
    A new type of hybrid core-shell nanoparticle dielectric that is suitable for inkjet printing is introduced. Gold cores (dcore  ≈ 4.5 nm diameter) are covalently grafted with thiol-terminated polystyrene (Mn  = 11000 Da and Mn  = 5000 Da) and used as inks to spin-coat and inkjet-print dielectric films. The dielectric layers have metal volume fractions of 5 to 21 vol% with either random or face-centered-cubic structures depending on the polymer length and grafting density. Films with 21 vol% metal have dielectric constants of 50@1 Hz. Structural and electrical characterization using transmission electron microscopy, small-angle X-ray scattering, and impedance spectroscopy indicates that classical random capacitor-resistor network models partially describe this hybrid material but fail at high metal fractions, where the covalently attached shell prevents percolation and ensures high dielectric constants without the risk of dielectric breakdown. A comparison of disordered to ordered films indicates that the network structure affects dielectric properties less than the metal content. The applicability of the new dielectric material is demonstrated by formulating inkjet inks and printing devices. An inkjet-printed capacitor with an area of 0.79 mm2 and a 17 nm thick dielectric had a capacitance of 2.2±0.1 nF@1 kHz .
  • Item
    Colloidal Analysis of Particles Extracted from Microalloyed Steels
    (Weinheim : Wiley-VCH, 2021) Hegetschweiler, Andreas; Jochem, Aljosha-Rakim; Zimmermann, Anna; Walter, Johannes; Staudt, Thorsten; Kraus, Tobias
    Different colloidal particle characterization methods are examined for their suitability to determine the particle size distribution of particles extracted from steels. Microalloyed steels are dissolved to extract niobium and titanium carbonitride particles that are important for the mechanical properties of these steels. Such particles have sizes ranging from several nanometers to hundreds of nanometers depending on the precipitation stage during the thermomechanically controlled rolling process. The size distribution of the particles is analyzed by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and hollow fiber flow field-flow fractionation (HF5) and compared to data obtained for reference particles as well as data from electron microscopy, the standard sizing technique used in metallurgy today. AUC and HF5 provide high-quality size distributions, average over large particle numbers that enables statistical analysis, and yield useful insights for alloy design; however, DLS fails due to a lack of resolution. Important aspects in the conversion and comparison of size distributions obtained for broadly distributed particle systems with different measurement principles and the role of surfactants used in sample preparation are discussed.
  • Item
    Phase diagram studies for the growth of (Mg,Zr):SrGa12O19 crystals
    (Dordrecht [u.a.] : Springer Science + Business Media B.V., 2021) Klimm, Detlef; Szczefanowicz, Bartosz; Wolff, Nora; Bickermann, Matthias
    By differential thermal analysis, a concentration field suitable for the growth of Zr, Mg co-doped strontium hexagallate crystals was observed that corresponds well with known experimental results. It was shown that the melting point of doped crystal is ca. 60 K higher than that of undoped crystals. This higher melting points indicate hexagallate phase stabilization by Zr, Mg co-doping and increase the growth window of (Mg,Zr):SrGa12O19, compared to undoped SrGa12O19 that grows from SrO–Ga2O3 melts.
  • Item
    On the viscous dissipation caused by randomly rough indenters in smooth sliding motion
    (Amsterdam : Elsevier, 2021) Sukhomlinov, Sergey; Müser, Martin H.
    The viscous dissipation between rigid, randomly rough indenters and linearly elastic counter bodies sliding past them is investigated using Green’s function molecular dynamics. The study encompasses a variety of models differing in the height spectra properties of the rigid indenter, in the viscoelasticity of the elastomer, and in their interaction. All systems reveal the expected damping linear in sliding velocity at small and a pronounced maximum at intermediate . Persson’s theory of rubber friction, which is adopted to the studied model systems, reflects all observed trends. However, close quantitative agreement is only found up to intermediate sliding velocities. Relative errors in the friction force become significant once the contact area is substantially reduced by sliding.
  • Item
    Nanoscale Faceting and Ligand Shell Structure Dominate the Self-Assembly of Nonpolar Nanoparticles into Superlattices
    (Weinheim : Wiley-VCH, 2022) Bo, Arixin; Liu, Yawei; Kuttich, Björn; Kraus, Tobias; Widmer-Cooper, Asaph; de Jonge, Niels
    Self-assembly of nanoscale structures at liquid–solid interfaces occurs in a broad range of industrial processes and is found in various phenomena in nature. Conventional theory assumes spherical particles and homogeneous surfaces, but that model is oversimplified, and nanoscale in situ observations are needed for a more complete understanding. Liquid-phase scanning transmission electron microscopy (LP-STEM) is used to examine the interactions that direct the self-assembly of superlattices formed by gold nanoparticles (AuNPs) in nonpolar liquids. Varying the molecular coating of the substrate modulates short-range attraction and leads to switching between a range of different geometric structures, including hexagonal close-packed (hcp), simple hexagonal (sh), dodecahedral quasi-crystal (dqc), and body-centered cubic (bcc) lattices, as well as random distributions. Langevin dynamics simulations explain the experimental results in terms of the interplay between nanoparticle faceting, ligand shell structure, and substrate–NP interactions.
  • Item
    Silicon-Nanotube-Mediated Intracellular Delivery Enables Ex Vivo Gene Editing
    (Weinheim : Wiley-VCH, 2020) Chen, Yaping; Aslanoglou, Stella; Murayama, Takahide; Gervinskas, Gediminas; Fitzgerald, Laura I.; Sriram, Sharath; Tian, Jie; Johnston, Angus P.R.; Morikawa, Yasuhiro; Suu, Koukou; Elnathan, Roey; Voelcker, Nicolas H.
    Engineered nano–bio cellular interfaces driven by vertical nanostructured materials are set to spur transformative progress in modulating cellular processes and interrogations. In particular, the intracellular delivery—a core concept in fundamental and translational biomedical research—holds great promise for developing novel cell therapies based on gene modification. This study demonstrates the development of a mechanotransfection platform comprising vertically aligned silicon nanotube (VA-SiNT) arrays for ex vivo gene editing. The internal hollow structure of SiNTs allows effective loading of various biomolecule cargoes; and SiNTs mediate delivery of those cargoes into GPE86 mouse embryonic fibroblasts without compromising their viability. Focused ion beam scanning electron microscopy (FIB-SEM) and confocal microscopy results demonstrate localized membrane invaginations and accumulation of caveolin-1 at the cell–NT interface, suggesting the presence of endocytic pits. Small-molecule inhibition of endocytosis suggests that active endocytic process plays a role in the intracellular delivery of cargo from SiNTs. SiNT-mediated siRNA intracellular delivery shows the capacity to reduce expression levels of F-actin binding protein (Triobp) and alter the cellular morphology of GPE86. Finally, the successful delivery of Cas9 ribonucleoprotein (RNP) to specifically target mouse Hprt gene is achieved. This NT-enhanced molecular delivery platform has strong potential to support gene editing technologies. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim