Search Results

Now showing 1 - 7 of 7
  • Item
    Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni-Core-Shell Catalyst
    (Weinheim : Wiley-VCH, 2021) Gao, Jie; Ma, Rui; Feng, Lu; Liu, Yuefeng; Jackstell, Ralf; Jagadeesh, Rajenahally V.; Beller, Matthias
    A general protocol for the selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core–shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which are of industrial and commercial importance, were selectively hydrogenated and deuterated at ambient conditions (room temperature, using 1 bar hydrogen or 1 bar deuterium), giving access to the corresponding alkanes and deuterium-labeled alkanes in good to excellent yields. The synthetic utility and practicability of this Ni-based hydrogenation protocol is demonstrated by gram-scale reactions as well as efficient catalyst recycling experiments. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Ligand-Controlled Palladium-Catalyzed Carbonylation of Alkynols : Highly Selective Synthesis of α-Methylene-β-Lactones
    (Weinheim : Wiley-VCH, 2020) Ge, Yao; Ye, Fei; Liu, Jiawang; Yang, Ji; Spannenberg, Anke; Jiao, Haijun; Jackstell, Ralf; Beller, Matthias
    The first general and regioselective Pd-catalyzed cyclocarbonylation to give α-methylene-β-lactones is reported. Key to the success for this process is the use of a specific sterically demanding phosphine ligand based on N-arylated imidazole (L11) in the presence of Pd(MeCN)2Cl2 as pre-catalyst. A variety of easily available alkynols provide under additive-free conditions the corresponding α-methylene-β-lactones in moderate to good yields with excellent regio- and diastereoselectivity. The applicability of this novel methodology is showcased by the direct carbonylation of biologically active molecules including natural products. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen
    ([London] : Nature Publishing Group UK, 2020) Cabrero-Antonino, Jose R.; Adam, Rosa; Papa, Veronica; Beller, Matthias
    Catalytic hydrogenation of amides is of great interest for chemists working in organic synthesis, as the resulting amines are widely featured in natural products, drugs, agrochemicals, dyes, etc. Compared to traditional reduction of amides using (over)stoichiometric reductants, the direct hydrogenation of amides using molecular hydrogen represents a greener approach. Furthermore, amide hydrogenation is a highly versatile transformation, since not only higher amines (obtained by C–O cleavage), but also lower amines and alcohols, or amino alcohols (obtained by C–N cleavage) can be selectively accessed by fine tuning of reaction conditions. This review describes the most recent advances in the area of amide hydrogenation using H2 exclusively and molecularly defined homogeneous as well as nano-structured heterogeneous catalysts, with a special focus on catalyst development and synthetic applications.
  • Item
    The role of allyl ammonium salts in palladium-catalyzed cascade reactions towards the synthesis of spiro-fused heterocycles
    ([London] : Nature Publishing Group UK, 2020) Ye, Fei; Ge, Yao; Spannenberg, Anke; Neumann, Helfried; Beller, Matthias
    There is a continuous need for designing new and improved synthetic methods aiming at minimizing reaction steps while increasing molecular complexity. In this respect, catalytic, one-pot cascade methodologies constitute an ideal tool for the construction of complex molecules with high chemo-, regio-, and stereoselectivity. Herein, we describe two general and efficient cascade procedures for the synthesis of spiro-fused heterocylces. This transformation combines selective nucleophilic substitution (SN2′), palladium-catalyzed Heck and C–H activation reactions in a cascade manner. The use of allylic ammonium salts and specific Pd catalysts are key to the success of the transformations. The synthetic utility of these methodologies is showcased by the preparation of 48 spiro-fused dihydrobenzofuranes and indolines including a variety of fluorinated derivatives.
  • Item
    Towards smooth (010) ß-Ga2O3films homoepitaxially grown by plasma assisted molecular beam epitaxy: The impact of substrate offcut and metal-to-oxygen flux ratio
    (Bristol : IOP Publ., 2020) Mazzolini, P.; Bierwagen, O.
    Smooth interfaces and surfaces are beneficial for most (opto)electronic devices that are based on thin films and their heterostructures. For example, smoother interfaces in (010) ß-Ga2O3/(AlxGa1-x)2O3 heterostructures, whose roughness is ruled by that of the ß-Ga2O3 layer, can enable higher mobility 2-dimensional electron gases by reducing interface roughness scattering. To this end we experimentally prove that a substrate offcut along the [001] direction allows to obtain smooth ß-Ga2O3 layers in (010)-homoepitaxy under metal-rich deposition conditions. Applying In-mediated metal-exchange catalysis (MEXCAT) in molecular beam epitaxy at high substrate temperatures (Tg = 900 °C) we compare the morphology of layers grown on (010)-oriented substrates having different unintentional offcuts. The layer roughness is generally ruled by (i) the presence of (110)-and bar 110-facets visible as elongated features along the [001] direction (rms < 0.5 nm), and (ii) the presence of trenches (5-10 nm deep) orthogonal to [001]. We show that an unintentional substrate offcut of only ˜ 0.1° almost oriented along the [001] direction suppresses these trenches resulting in a smooth morphology with a roughness exclusively determined by the facets, i.e. rms ˜ 0.2 nm. Since we found the facet-and-trench morphology in layer grown by MBE with and without MEXCAT, we propose that the general growth mechanism for (010)-homoepitaxy is ruled by island growth whose coalescence results in the formation of the trenches. The presence of a substrate offcut in the [001] direction can allow for step-flow growth or island nucleation at the step edges, which prevents the formation of trenches. Moreover, we give experimental evidence for a decreasing surface diffusion length or increasing nucleation density on the substrate surface with decreasing metal-to-oxygen flux ratio. Based on our experimental results we can rule-out step bunching as cause of the trench formation as well as a surfactant-effect of indium during MEXCAT. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Layered Nano‐Mosaic of Niobium Disulfide Heterostructures by Direct Sulfidation of Niobium Carbide MXenes for Hydrogen Evolution
    (Weinheim : Wiley-VCH, 2022) Husmann, Samantha; Torkamanzadeh, Mohammad; Liang, Kun; Majed, Ahmad; Dun, Chaochao; Urban, Jeffrey J.; Naguib, Michael; Presser, Volker
    MXene-transition metal dichalcogenide (TMD) heterostructures are synthesized through a one-step heat treatment of Nb2C and Nb4C3. These MXenes are used without delamination or any pre-treatment. Heat treatments accomplish the sacrificial transformation of these MXenes into TMD (NbS2) at 700 and 900 °C under H2S. This work investigates, for the first time, the role of starting MXene phase in the derivative morphology. It is shown that while treatment of Nb2C at 700 °C leads to the formation of pillar-like structures on the parent MXene, Nb4C3 produces nano-mosaic layered NbS2. At 900 °C, both MXene phases, of the same transition metal, fully convert into nano-mosaic layered NbS2 preserving the parent MXene's layered morphology. When tested as electrodes for hydrogen evolution reaction, Nb4C3-derived hybrids show better performance than Nb2C derivatives. The Nb4C3-derived heterostructure exhibits a low overpotential of 198 mV at 10 mA cm−2 and a Tafel slope of 122 mV dec−1, with good cycling stability in an acidic electrolyte.
  • Item
    2,4-Bis(arylethynyl)-9-chloro-5,6,7,8-tetrahydroacridines: synthesis and photophysical properties
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2021) Tka, Najeh; Ayed, Mohamed Adnene Hadj; Braiek, Mourad Ben; Jabli, Mahjoub; Chaaben, Noureddine; Alimi, Kamel; Jopp, Stefan; Langer, Peter
    Acridine derivatives have attracted considerable interest in numerous areas owing to their attractive physical and chemical properties. Herein, starting from readily available anthranilic acid, an efficient synthesis of 2,4-bis(arylethynyl)-9-chloro-5,6,7,8-tetrahydroacridine derivatives was accomplished via a one-pot double Sonogashira cross-coupling method. The UV-visible absorption and emission properties of the synthesized molecules have been examined. Additionally, theoretical studies based on density functional theory (DFT/B3LYP/6-31G(d)) were carried out.